

Lecture Notes in Computer Science 5281
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Steffen Becker Frantisek Plasil
Ralf Reussner (Eds.)

Quality of
SoftwareArchitectures
Models and Architectures

4th International Conference on the Quality
of Software Architectures, QoSA 2008
Karlsruhe, Germany, October 14-17, 2008
Proceedings

13

Volume Editors

Steffen Becker
FZI Forschungszentrum Informatik
Haid-und-Neu-Strasse 10-14, 76131 Karlsruhe, Germany
E-mail: sbecker@fzi.de

Frantisek Plasil
Charles University, Department of Software Engineering
Malostranske nam. 25, 11800 Prague 1, Czech Republic
E-mail: plasil@dsrg.mff.cuni.cz

Ralf Reussner
Universität Karlsruhe (TH), Karlsruhe Institute of Technology (KIT)
Institut für Programmstrukturen und Datenorganisation
76128 Karlsruhe, Germany
E-mail: reussner@ipd.uka.de

Library of Congress Control Number: 2008935391

CR Subject Classification (1998): D.2.9, D.2.11, B.8, D.4.8, C.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-87878-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87878-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12529599 06/3180 5 4 3 2 1 0

Preface

Models are used in all kinds of engineering disciplines to abstract from the various
details of the modelled entity in order to focus on a specific aspect. Like a blueprint in
civil engineering, a software architecture provides an abstraction from the full software
system’s complexity. It allows software designers to get an overview on the system
under development and to analyze its properties. In this sense, models are the foundation
needed for software development to become a true engineering discipline.

Especially when reasoning on a software system’s extra-functional properties, its
software architecture carries the necessary information for early, design-time analyses.
These analyses take the software architecture as input and can be used to direct the
design process by allowing a systematic evaluation of different design alternatives. For
example, they can be used to cancel out decisions which would lead to architecture de-
signs whose implementation would not comply with extra-functional requirements like
performance or reliability constraints. Besides such quality attributes directly visible to
the end user, internal quality attributes, e.g., maintainability, also highly depend on the
system’s architecture.

In addition to the above-mentioned technical aspects of software architecture mod-
els, non-technical aspects, especially project management-related activities, require an
explicit software architecture model. The models are used as input for cost estima-
tions, time-, deadline-, and resource planning for the development teams. They serve
the project management activities of planning, executing, and controlling, which are
necessary to deliver high-quality software systems in time and within the budget.

The 4th International Conference on the Quality of Software Architectures (QoSA)
2008 focused on software architecture models and modelling techniques through its
motto "Models and Architectures." A focus was set on models which aim at improving
the predictability of the quality of systems under development. In so doing, it contin-
ued QoSA’s tradition of using software architectures to develop and evolve high-quality
software systems. Such architectural models contain details on the structure of a soft-
ware, i.e., the components and connectors it is built of, the software’s behavior, i.e., its
control and data flows, and the software’s deployment, i.e., the allocation of compo-
nents and connectors on software and hardware environments. In line with the focus
on models, QoSA 2008 also focused on the automated transformation of models using
model-driven development techniques.

QoSA 2008 received 36 submissions. From these submissions, 13 were accepted as
long papers after a careful peer-review process followed by an online Program Com-
mittee discussion. This resulted in an acceptance rate of 36%. The selected technical
papers are published in this volume, together with a written version of the invited talk
by Carlo Ghezzi. For the second time, QoSA was held as part of the conference series
Federated Events on Component-Based Software Engineering and Software Architec-
ture (COMPARCH). The federated events were QoSA 2008, the 11th International Sym-
posium on Component-Based Software Engineering (CBSE 2008) and the Workshop on

VI Preface

Component-Based High-PerformanceComputing (CBHPC 2008). Together with COM-
PARCH’s Industrial Experience Report Track and the co-located Workshop on
Component-Oriented Programming (WCOP 2008), COMPARCH provided a broad
spectrum of events related to components and architectures. By integrating QoSA’s and
CBSE’s technical programs in COMPARCH 2008, both conferences elaborated their
successful collaboration thus demonstrating the close relationship between software ar-
chitectures and their constituting software components.

Among the many people who contributed to the success of QoSA 2008, we would
like to thank the members of the Program Committees for their valuable work during
the review process, as well as Carlo Ghezzi, Michael Stal, Thomas Dreier, Philippe
Kruchten, and Florian Matthes for their COMPARCH keynotes. Additionally, we thank
Alfred Hofmann from Springer for his support in reviewing and publishing the proceed-
ings volume and Henning Groenda for his support in organizing QoSA and preparing
this LNCS volume. The QoSA organizers would also like to thank the supporters of
COMPARCH 2008, namely 1&1 Internet AG and sd&m AG. This conference would
not have been possible without the commitment of all these people and our supporters.

July 2008 Steffen Becker
Frantisek Plasil

Ralf Reussner

Organization

QoSA 2008 (Part of COMPARCH 2008)

General Chair

Ralf Reussner, University of Karlsruhe (TH), Germany

Program Committee Chairs

Steffen Becker, Forschungszentrum Informatik (FZI), Germany
Frantisek Plasil, Charles University, Czech Republic

Program Committee

Colin Atkinson, University of Mannheim, Germany
Achim Baier, itemis AG, Germany
Len Bass, Software Engineering Institute, USA
Jan Bosch, Intuit, USA
Jeremy Bradley, Imperial College London, UK
Vincenzo Grassi, University of Rome "Tor Vergata", Italy
Wilhelm Hasselbring, University of Oldenburg / OFFIS, Germany
Christine Hofmeister, Lehigh University, USA
Jean-Marc Jezequel, University of Rennes / INRIA, France
Samuel Kounev, University of Cambridge, UK
Patricia Lago, Vrije Universiteit, The Netherlands
Nicole Levy, University of Versailles, France
Markus Lumpe, Swinburne University, Australia
Eric Madelaine, Inria, France
Tomi Mannisto, Helsinki University of Technology, Finland
Nenad Medvidovic, University of Southern California, USA
Raffaela Mirandola, Politecnico di Milano, Italy
Robert Nord, Software Engineering Institute, USA
Dorina Petriu, Carleton University, Canada
Iman Poernomo, King’s College, UK
Sasikumar Punnekkat, Mälardalen University, Sweden
Andreas Rausch, Clausthal University of Technology, Germany
Matthias Riebisch, Technical University of Ilmenau, Germany
Roshanak Roshandel, Seattle University, USA
Bernhard Rumpe, University of Technology Braunschweig, Germany
Jean-Guy Schneider, Swinburne University, Australia
Michael Stal, Siemens, Germany
Petr Tuma, Charles University, Czech Republic
Axel Uhl, SAP, Germany
Kurt Wallnau, Software Engineering Institute, USA

VIII Organization

Wolfgang Weck, Independent Software Architect, Switzerland
Murray Woodside, Carlton University, Canada
Steffen Zschaler, Technical University of Dresden, Germany

Co-reviewers

Huseyin Aysan, Mälardalen University, Sweden
Franz Brosch, Forschungszentrum Informatik (FZI), Germany
Antonio Cansado, Inria, France
Virginie Contes, Inria, France
Fabrice Huet, Inria, France
Christoph Rathfelder, Forschungszentrum Informatik (FZI), Germany

Major Supporters

1&1 Internet AG, Karlsruhe, Germany
sd&m AG, Munich, Germany

Table of Contents

Keynote

Rethinking the Use of Models in Software Architecture 1
Danilo Ardagna, Carlo Ghezzi, and Raffaela Mirandola

Architectural Design Decisions and Influence on Quality

Design Reasoning Improves Software Design Quality 28
Antony Tang, Minh H. Tran, Jun Han, and Hans van Vliet

A Tool to Visualize Architectural Design Decisions 43
Larix Lee and Philippe Kruchten

Style-Based Model Transformation for Early Extrafunctional Analysis
of Distributed Systems . 55

Julien Mallet and Siegfried Rouvrais

Architecture and Components / Reasoning about
Components

Carmen: Software Component Model Checker . 71
Aleš Pľsek and Jǐŕı Adámek

MOSES: MOdeling Software and platform architEcture in UML 2 for
Simulation-based performance analysis . 86

Vittorio Cortellessa, Pierluigi Pierini, Romina Spalazzese, and
Alessio Vianale

Designing the Enterprise Architecture Function . 103
Bas van der Raadt and Hans van Vliet

Quality Prediction of Service Compositions through Probabilistic
Model Checking . 119

Stefano Gallotti, Carlo Ghezzi, Raffaela Mirandola, and
Giordano Tamburrelli

Models and Prediction

Model-Driven Performance Analysis . 135
Gabriel A. Moreno and Paulo Merson

X Table of Contents

Architectural Specification and Static Analyses of Contractual
Application Properties . 152

Guillaume Waignier, Anne-Françoise Le Meur, and
Laurence Duchien

Integrating Quality-Attribute Reasoning Frameworks in the ArchE
Design Assistant . 171

Andres Diaz-Pace, Hyunwoo Kim, Len Bass, Phil Bianco, and
Felix Bachmann

Architecture Evaluation Processes

Middleware Architecture Evaluation for Dependable Self-managing
Systems . 189

Yan Liu, Muhammad Ali Babar, and Ian Gorton

Comprehensive Architecture Evaluation and Management in Large
Software-Systems . 205

Frank Salger, Marcel Bennicke, Gregor Engels, and Claus Lewerentz

Sharing the Architectural Knowledge of Quantitative Analysis 220
Anton Jansen, Tjaard de Vries, Paris Avgeriou, and
Martijn van Veelen

Author Index . 235

Rethinking the Use of Models in Software Architecture

Danilo Ardagna, Carlo Ghezzi, and Raffaela Mirandola

Politecnico di Milano, Dipartimento di Elettronica e Informazione,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{ardagna,ghezzi,mirandola}@elet.polimi.it

Abstract. Models play a central role in software engineering. They may be used
to reason about requirements, to identify possible missing parts or conflicts. They
may be used at design time to analyze the effects and trade-offs of different ar-
chitectural choices before starting an implementation, anticipating the discovery
of possible defects that might be uncovered at later stages, when they might be
difficult or very expensive to remove. They may also be used at run time to sup-
port continuous monitoring of compliance of the running system with respect to
the desired model. This paper focuses on models that support reasoning about
non-functional system properties — namely, performance and reliability. It pro-
vides a taxonomy, which tries to capture the main facets that are needed to un-
derstand, choose, and use models appropriately in the various phases of software
development and operation. The paper also focuses on the roundtrip from models
to reality and back. The forward path is followed in model-driven development.
The backward path is instead meant to enable model calibration, with the goal of
building adequate abstractions, which reflect reality and its properties in a faithful
manner. Calibration may be required because of flaws in the initial model or in
the process that derived the implementation, or because of changes that occurred
in the environment or in the requirements. This leads to the idea that models
should continue to live at run time, on-line with the running implementation.
Calibrated models may drive the necessary dynamic changes that may support
self-adaptation of the implemented system.

1 Introduction

Engineers use models to design artifacts. Civil engineers define the model of a bridge
before constructing it. The model may be an abstract mathematical description consist-
ing of equations that describe the static behavior of the bridge. The abstraction may
view the bridge as a rigid body and may ignore deformation. By applying standard
mathematical reasoning, the engineer may estimate the forces at junction points due to
certain loads. By refining the model and taking into account the material used to build
it, it is possible to estimate whether a certain load will be sustained. Further, models
allow the engineer to reason about dynamic properties, such as the effect of changing
loads, wind, or even earthquake, to foresee the behavior of the system-to-be.

Another type of widely used approach to modeling requires building a mockup of the
artifact and experimentally evaluate its properties to estimate the behaviors of the future
artifact. For example, wind tunnels, inspired by the achievements of Gustave Eiffel in
Paris, at the beginning of the twentieth century, are now widely widespread worldwide
to support aerodynamic test of mockups of vehicles or aerospace equipment.

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 1–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D. Ardagna, C. Ghezzi, and R. Mirandola

Models (and abstraction) are key to computing and play an even more important and
pervasive role in software engineering [42]. In the end, the software written in a high-
level language is a model of the executable code, which is generated automatically by
the compiler. In addition, every application embodies a more or less explicit model
of the real world with which the automated software system will interact. Indeed, the
relevant part of the real world should be understood and modeled in the requirements
acquisition phase, before starting the design of the system. System design also relies
on models. For example, the entity-relationship (ER) model [22] is widely used by
database designers to reason about the logical structure of data, before defining the
tables used in the implementation.

A wealth of models has been proposed over time to support software engineers.
They vary according to the level of formality and precision, the aspects they intend to
describe, and the kind of reasoning they support. For example, a use case [18] provides
a rather high-level and loose description of the possible interactions of actors with the
system, while a labelled transition system [43] may provide a formal description of
the dynamic behavior of a software component. The former is normally used in the
requirements phase. The latter may also be used in the design phase, to reason about
the dynamic behavior of a tentative high-level solution.

The most striking aspect of models in software engineering, as opposed to mod-
els in other traditional engineering fields, is that models and final artifacts are made
of the same fabric: they are both software. This is why model transformations may
be conceived to support the transition from model to system. Such transformations
may be more or less automatic, but in any case they may be stated as precisely de-
fined software manipulation actions, rather than informal design steps. Model-driven
development (MDD) [7] has recently emerged as a discipline that tries to systematize
model-based software development.

The role of models is rather well understood in the initial development of an appli-
cation. Models represent abstractions of the system-to-be. They may abstract both the
real world in which the systems will be embedded and the systems themselves. They
may be used to support the engineers in the design choices they have to make. Because
a model-driven development process follows a path from abstract to concrete layers,
different design models are developed at each stage. In addition, at each stage, several
models may be produced to support different views of the system and reasoning on
different kinds of properties.

In this paper, we focus on models that support analysis of non-functional properties,
namely reliability and performance. The models needed to reason about such properties
(analysis-oriented models) differ from the more conventional models used by software
engineers to express their design choices (design-oriented models), although the former
may be obtained from the latter by means of certain systematic transformation patterns.

Because the models are abstraction of the real systems, the results of analysis ap-
proximate the results that will hold when the implemented system will be deployed and
executed in the real world. The approximations are due both to the abstractions made on
the software to-be and on the environment in which the software will be embedded. It
is therefore possible that a model-driven development, because of inaccurate or wrong
modeling assumptions, leads to an implementation that is not satisfactory. In particular,

Rethinking the Use of Models in Software Architecture 3

the environment abstraction used at design time may prove to be inadequate: it may
reflect only partially what happens in reality. For example, certain user behaviors that
were assumed as occasional during design may prove to be very common. As another
example, the performance or reliability profile of certain resources used by the system in
practice may differ from the figures assumed at design time. Because of the inaccuracy
of the data, the initial model may be flawed, and the implementation derived from the
model needs to be evolved. According to the principles of model-driven development,
this in turn requires calibrating the model, and then re-generating the implementation.

Recent trends in software development indicate that software increasingly needs to
evolve dynamically, to adapt to changing environmental conditions that may occur as
the system is running. To support the roundtrip from model to implementation and back,
which is mandated by the principles of model-driven development, it is necessary that
the model is kept alive at run time, and that the necessary adaptations are driven by the
modifications in the model. It is also necessary that monitoring facilities should be in
place to support the detection of changes in the environment which drive changes in the
model.

The two aforementioned points lead to another, increasingly important, role of mod-
els, which extends from design time to also cover run time. Models must continue to
exist after the end of development. They should be kept alive at run time to support
the tuning of the model that may be necessary in both previous cases. And the tuning
of the model may lead to a —more or less— automatic dynamic adjustments of the
implementation.

The rest of the paper is organized as follows. The model-driven approach and the
need for analysis-oriented models will be discussed in Section 2. Because many design-
oriented and analysis-oriented models exist and it is often unclear which one to use at
different stages and for different purposes, Section 3 provides a preview of a concep-
tual map we propose to provide guidance for software engineers. The conceptual map
defines a taxonomy of models. Sections 4 through 7 justify our findings by reviewing
the most relevant models supporting analysis of non-functional properties. They also
discuss the stage at which each specific model is most suitable and how the analysis
models may be derived systematically from the design models available at that stage.
Section 8 wraps up the discussion by focusing on comparison criteria. Finally, Sec-
tion 9 provides conclusions and outlines some relevant research directions, focusing in
particular on run time models and run time verification.

2 Software Quality Model Driven Framework

The goal of MDD is twofold. On the one side, it aims at deriving (automatically or
semi-automatically) a software implementation, starting from high-level models of the
system and applying model transformation rules which refine high-level descriptions
into more concrete and specific models. On the other, it aims at supporting reasoning
activities on the high-level models. Through an early analysis of non-functional proper-
ties, such as performance and reliability, the software engineer can evaluate the impact
of the different design choices or candidate system architectures, before they are reified
into runnable code.

4 D. Ardagna, C. Ghezzi, and R. Mirandola

CIM CINFM

PIM

PSM

PINFM

PSNFM

Run-time
models

Code
Running

Design-time

Run-time

M
on

ito
rin

g
Fig. 1. Reference Framework

MDD has been actively investigated in the last years, and some taxonomies of model
transformation approaches have been defined to help a software developer choosing the
method that is best suited for his or her needs [28, 58, 76].

The MDD framework includes three main abstraction layers [59], shown on the left-
hand side of Figure 1:

– The Computational Independent Model (CIM), whose goal is to describe the main
functionalities to be implemented by the application (e.g., in the UML 2.0 frame-
work, a use case diagram is an example of a CIM);

– The Platform Independent Model (PIM), which describes in more detail the logic
flow of the system and, possibly, the user interactions, in order to achieve the func-
tionalities (e.g., a sequence or an activity diagram of UML 2.0);

– The Platform Specific Model (PSM), which describes how application compo-
nents are mapped onto the system physical resources (e.g., a UML 2.0 deployment
diagram).

To reason about non-functional quality attributes of a software system, it is neces-
sary to transform the aforementioned “design-oriented” models of the software system
into “analysis-oriented” models that support the desired analysis methods [54]. In the
specific case of performance and reliability attributes, the analysis-oriented model may
provide a probabilistic description of the system that evolves in time and space. Pos-
sible examples are queuing networks or different kinds of Markovian models. Corre-
sponding to the three MDD layers listed above (CIM, PIM, and PSM), in [25] three
additional classes of analysis-oriented models have been identified (CINFM, PINFM,
and PSNFM), where:

– CINFM (Computation Independent Non-Functional Model) represents the require-
ments and constraints related to a NF aspect (i.e., performance and reliability). An
example of a CINFM may be a Use Case Diagram augmented with reliability re-
quirements.

Rethinking the Use of Models in Software Architecture 5

– PINFM (Platform Independent Non-Functional Model) represents the logic of the
system along with estimates of NF characteristics, such as the amount of resources
that the logic needs to be executed. An example of a PINFM can be a Markov
Model derived from the corresponding PIM annotated with non-functional aspects.

– PSNFM (Platform Specific Non-Functional Model) contains variables and param-
eters that represent the software structure and dynamics, as well as the platform
and the environment in which the software will be deployed. A characterization of
the platform must include data on the underlying hardware architecture, such as
the CPU speed or the failure probability of a network connection. An example of
PSNFM is provided by a queueing network model derived from the corresponding
PSM and including performance parameters.

The idea of non-functional analysis-oriented models associated with the correspond-
ing design models proposed by [25] starts from the canonical view of the MDD ap-
proach [59] and embeds quantitative models to evaluate performance and reliability of
the final application to be deployed. A conceptual extension of this framework is sum-
marized in Figure 1. The figure shows the role of models not only at design time, which
was discussed so far, but also at run time. At run time, a monitor collects the results
of execution of the software system in the target environment. The data gathered by
the monitor are checked against the model, to verify that non-functional requirements
are satisfied. As we mentioned, this is necessary to close the loop between design time
modelling and run time execution.

The transformations among models described in Figure 1 can be classified as ei-
ther horizontal or vertical transformations. Following the canonical MDD framework,
horizontal transformations (arrows from left to right) yield a target model at the same
level of abstraction as the source model. The transformation adds annotations about
non functional requirements to support reasoning about performance and reliability. A
detailed overview of transformation approaches is given in [28, 54, 76].

The focus of horizontal transformation is on specifying the information that is lack-
ing in the software architecture description but is crucial for the quantitative non-
functional analysis (examples of this information can be: number of invocations of a
component within a certain scenario, probability of executions, etc). Some efforts in
this direction can be found for example, in the introduction of UML profiles aiming at
represent performance and QoS information [60, 61].

Vertical transformations produce a target model at a different abstraction level. Ver-
tical transformation can abstract or refine the source model (down or up arrows in
Figure 1). A vertical transformation of a non-functional model is used to refine a higher
level model, to improve the accuracy of the performance/reliability metrics.

According to Figure 1, the goal of performance and reliability models at design time
is to evaluate the impact of multiple architectural choices by predicting the correspond-
ing run time behaviors. Instead, at run time the goal is: (i) to track the real figures of
system performance and reliability and check them against high-level requirements and
constraints guarantees, (ii) to trigger re-configuration mechanisms, and (iii) to fine-tune
non functional parameters used as input to higher level analysis models.

6 D. Ardagna, C. Ghezzi, and R. Mirandola

It is increasingly important that software systems behave in an autonomic manner;
i.e., they can automatically reconfigure and adapt themselves in order to match changing
execution conditions and/or user requirements. This issue is taken up later in this paper.

3 Towards a Conceptual Map of Models for Quality Evaluation

A substantial amount of research has been devoted to devising performance and reli-
ability prediction techniques for software systems (see for example [1, 72]). One of
the goals of this paper is to provide a conceptual map where the most prominent tech-
niques can be positioned. This may help software engineers understand where and how
the different techniques may be used. The conceptual map produced by our findings
is summarized in Table 1. Hereafter we anticipate a few general comments. The back-
ground material on models and analysis that led to the conceptual map is discussed in
Sections 4 through 7. For each model family we will highlight the accuracy provided,
the layer at which the models are usually adopted, and finally the availability of tools
for automatic model derivation.

Table 1 shows that models can be classified according to several dimensions. First,
they are classified according to the target quality of the analysis, i.e. performance or
reliability. Models are also classified as design-time or run-time models. Design-time
models are further classified according to the reference framework of Figure 1; that is,
as CINFM, PINFM, or PSNFM. Run-time models are instead classified according to
the different time scales they can deal with. Some performance models are based on the
assumption that the system is in a steady state. Hence, they are appropriate for medium
to long range time reasoning (e.g., half an hour) [6, 66]. In the following, they will
be called long-term models. Vice versa, some more recent contributions from control-
theory research area can accurately model the system at a finer time grain (e.g. seconds)
and can also deal with system transients. They will be called short-term models.

The goal of performance analysis is to determine metrics, such as the system through-
put (usually denoted with X , i.e., the rate at which requests are executed by the system),
response time (usually denoted with R, i.e., the average time needed by the system to
process users’ requests), or system utilization (usually denoted with U , i.e., the pro-
portion of time the system is busy). Usually models support evaluation of the aver-
age values of performance metrics, but some analyses could also provide percentile

Table 1. Quantitative Models Conceptual Mapping

Performance Reliability Design Time Run Time
Model Family Model PINFM PSNFM Long Term Short Term
Queueing Models Bound Analysis X X X X X

Product form X X X X
Non-product form X X X
LQN X X X

Markov Models Discrete Time Markov Chains X X X X
Continuous Time Markov Chains X X X X
Markov Decision Processes X X X X
Stochastic Model Checking X X X X

Simulation Approaches Simulation Models X X X X
Control-Oriented Models LTI X X X

LPV X X

Rethinking the Use of Models in Software Architecture 7

distributions. We recall that the percentile distribution of the response time Rα is
defined as the value of response time such that the probability of getting a value less
than or equal to Rα is α/100. In other words, P (R ≤ Rα) = α/100. The evalua-
tion of the percentile distribution is very important since nowadays service level agree-
ments (SLAs) between providers and their customers are typically formulated in terms
of them. For example, ”95% of requests have to experience a response time lower than,
e.g., 5 seconds”.

Several definitions of dependable systems and dependability metrics have been pro-
vided in the literature [8]. We assume that system reliability at a given time t is de-
fined as the probability that a system has always been working properly during the time
interval (0, t).

4 Queueing Network Models

Queueing network (QN) models [17, 49] are a mathematical modeling approach in
which a software system is represented as a collection of: (i) service centers, which
model system resources, and (ii) customers, which represent system users or “requests”
and move from one service center to another one. The customers’ competition to access
resources corresponds to queueing into the service centers.

The simplest queueing network model includes a single service center (see Figure 2)
which is composed of a single queue and a single server: the queue models a flow of
customers or requests which enter the system, wait in the queue if the system is busy
serving other requests, obtain the service, and then depart. Note that, at any time instant
only one customer or request is obtaining the service. Single service centers can be
described by two parameters: the requests arrival rate, usually denoted by λ, and the
average service time S, i.e., the average time required by the server in order to execute
a single request. The maximum service rate is usually indicated with µ and is defined as
µ = 1/S. Given the request arrival rate and the requests service time, QN theory allows
evaluating the average value of performance metrics by solving simple equations.

In real systems, requests need to access multiple resources in order to be executed;
accordingly, in the model they go through more than a single queue. A QN includes
several service centers and can be modeled as a directed graph were each node represent
the k-th service center, while arcs represent transitions of customers/requests from one
service center to the next. The set of nodes and arcs determines the network topology.

λ

R

w S

X

Fig. 2. Single Service Center Model. W indicates the requests’ waiting time, i.e. the average time
spent by requests in the queue.

8 D. Ardagna, C. Ghezzi, and R. Mirandola

Product-form QN. One of the most important result of queueing network theory is
the BCMP theorem (by Baskett, Chandy, Muntz, and Palacios-Gomez) which, under
various assumptions (see [12] for further details), shows that performance of a software
system is independent of network topology and requests routing but depends only on
the requests arrival rate and on the requests demanding time Dk, i.e., the average overall
time requeried to complete a request at service center k. The average number of time a
request is served at the k-th service center is defined as the number of visits Vk, and it
holds Dk = Vk · Sk.

In time sharing operating systems, as an example, the average service time is the
operating system time slice, while the demanding time is the overall average CPU time
required for a request execution. The number of visits is the average number of accesses
to the CPU performed by a single request.

Queueing networks satisfying the BCMP theorem assumptions are an important class
of models also known as separable queueing networks or product-form models. The
name “separable” comes from the fact that each service center can be separated from
the rest of the network, and its solution can be evaluated in isolation. The solution of the
entire network can then be formed by combining these separate results [12, 31, 38, 49]1.
Such models are the only ones that can be solved efficiently, while the solution time of
the equations governing non-product form queueing network grows exponentially with
the size of the network. Hence, in practical situations the time required for the solution
of non-product form networks becomes prohibitive and approximate solutions have to
be adopted.

Open and Closed Models. Queueing models can be classified as open or closed mod-
els. In open models customers can arrive and depart and the number of customers in
the system cannot be determined a-priori (and, possibly, it can be infinite). The sin-
gle service center system in Figure 2 is an open model. Vice versa, in closed models
the number of customers in the system is a constant, i.e., no new customer can enter
the system, and no customer can depart (see Figure 3). While open models are charac-
terized by the requests arrival rate λ, a closed model can be described by the average
number of users in the system N and by their think time Z , i.e., the average time that
each customer “spends thinking” between interactions (e.g., reading a Web page be-
fore clicking the next link). Customers in closed queue models are represented as delay
centers (circles in Figure 3).

Usually Service Oriented Architecture (SOA) based systems are modeled by means
of open models [6]. Closed systems can be adopted, for example, to model an Intranet
with a fixed number of users or an Internet application when the concurrent number of
sessions is kept constant (e.g., as a result of an overload protection mechanism [77]).

Single and Multi-Class Models. Finally, queueing models can be classified as single
class and multi-class models. In single class models, customers have the same behavior;
vice versa, in multi-class models, customers behave differently and are mapped into
multiple-classes. Each class c can be characterized by different values of demanding

1 The name “product-form” comes from the fact that the stationary state distribution of the
queueing network can be expressed as the product of the distributions of the single queues and
avoids the numerical solution of the underlying Markov chain.

Rethinking the Use of Models in Software Architecture 9

Z

Fig. 3. Closed Model Example

time Dc,k at the k-th service center, different arrival rate λc in open models, or number
of users Nc and think time Zc in closed models. Customers in each class are statistically
indistinguishable. Queueing network theory allows determining performance metrics
(i.e. response times, utilizations, etc.) on a per-class basis or on an aggregated basis for
the whole system.

Layered QN. Layered queueing networks (LQN) models were developed as an ex-
tension of QN [69, 78]. A LQN model is an acyclic graph, with nodes representing
software entities and hardware devices, and arcs denoting service requests. The soft-
ware entities are also known as tasks. Each kind of service offered by a LQN task is
modeled as a so-called entry, which can be further described by two alternative ways,
i.e. using either activities or phases. Activities allow describing more complex behav-
iors, e.g. with control structures such as forks and joins and loops. Phases are used for
notational convenience to specify activities that are sequences of several steps. The ad-
vantage of LQN is to introduce also software elements as resources and hence they can
capture the contention to access software components.

Solution Techniques. After modelling a software system as a queueing network, the
model has to be evaluated in order to determine quantitatively the performance metrics.

A first step in the evaluation can be achieved by determining the system bounds;
specifically, upper and lower bounds on system throughput and response time can be
computed as functions of the system workload intensity (number or arrival rate of cus-
tomers). Bounds usually require a very little computational effort, especially for the
single class case [21, 40].

More accurate results can be achieved by solving the equations which govern the
QN behavior. Solution techniques can be classified in analytical methods (which can be
exact or approximate) and simulation methods (see Section 6). Exact analytical meth-
ods can determine functional relations between model parameters (i.e., request arrival
rate λc, number of customers Nc and think time Zc, and requests demanding times
Dc,k) and performance metrics. The analytical solution of open models system is very

10 D. Ardagna, C. Ghezzi, and R. Mirandola

simple even for multiple class models and yields the average value of the performance
metrics. The exact solution of single class closed models is known as the Mean Value
Analysis (MVA) algorithm and has a linear time complexity with the number of cus-
tomers and the number of service centers of the models. The MVA algorithm has been
extendend also to multiple classes, but the time complexity is non-polynomial with the
number of customers or with the number of service centers and classes [20, 49]. Hence,
large closed models are solved by recurring to approximate solutions, which are mainly
iterative methods and can determine approximate results in a reasonable time.

Analytical solutions can determine the average values of the performance metrics
(e.g., average response time, utilization, etc.) or, in some cases, also the percentile dis-
tribution of the metric of interest. Determining the percentile distribution of large sys-
tems is usually complex even for product-form networks. Indeed, while the mean value
of the response time of a request that goes through multiple queues is given by the sum
of the average response time obtained locally at the individual queues, the aggregated
probability distribution is given by the convolution of the probability distribution of
the individual queues. The analytical expression of the percentile distribution becomes
complicated for large system (most of the studies provided in the literature are lim-
ited to tandem queues, i.e. queueing networks including two service centers [17, 39]).
For this reason, some approximate formulas have been introduced. Markov’s Inequality
[41, 62] provides an upper-bound on the probability that the response time exceeds the
threshold Rα. This upper-bound depends only on the average response time E[R], and
can be computed as P (R ≥ Rα) ≤ E[R]/Rα. However, Markov’s inequality is known
for providing somewhat loose upper-bounds. Chebyshev’s inequality [41] provides a
tighter upper-bound based on estimates of response time variance, V ar[R], in addition
to estimates of the average response time E[R]. Chebyshev’s inequality is given by
P (R ≥ Rα) ≤ V ar[R]

(Rα−E[R])2 .

Accuracy. Although the BCMP theorem assumptions almost never hold in real soft-
ware systems, experience has shown that the accuracy of queueing network models is
extremely robust with respect to violations of these assumptions [49]. Typically the de-
viations between the measured values in a real system and the ones obtained by the
models come from an inaccurate estimate of parameter values for service demands or
workload intensities. The only important exceptions are the cases where the limitations
on the structure of the model imposed by the BCMP theorem inhibit the representation
of aspects affecting performance (e.g., requests routing, blocking conditions, service
time distributions, etc.). In these cases, basic product-form solutions can be extended
for example by introducing burstiness parameters [56] or iteratively solved in order to
provide more accurate results. In other words, separable models are also the basic build-
ing blocks which can be adopted for the construction of more detailed models. As an
example, the solution technique for LQN is based on this idea.

In terms of accuracy, a large body of experience [49] indicates that queueing network
models can be expected to be accurate in the range 5-10% for utilization and throughput
estimates and within 10 to 30% for response time. Bounding techniques are usually
characterized by a worst case estimate with respect to the exact analytical solution in
the range 15-35% for system throughput, while for response time usually the bounds are
more inaccurate. Recently in [21] geometric bounds have been proposed, a new family

Rethinking the Use of Models in Software Architecture 11

of fast and accurate family of bounds for closed models where the bounding error for
system throughput is in the worst case within 5-13%.

Approximate MVA algorithms for multi-class closed models provide results typ-
ically within a few percent of the exact solution for throughput and utilization, and
within 10% for queue lengths and response time [49].

With respect to the use of product-form QNs as run time models, they are usually
emebedded in an optimization framework and the accuracy has also been evaluated in
terms of variation of the objective function to be optimized. In the preliminary work
presented in [4, 27], authors have analyzed the variation of the objective function which
can be obtained by adopting different solution techniques in the same autonomic frame-
work. Results depend on the optimization framework and can not be easily generalized;
anyway authors have shown that Markov and Chebichev’s inequalities lead to conser-
vative allocation decisions that are up to 20% less profitable than the optimal solution
obtained by adopting an exact tandem queue model.

Model Adoption. Queueing network models can be used at design time to perform
performance analyses. QN bounds can be used to obtain performance information at
design time (both at PIM and at the PSM level) following the method proposed in [55].
[19, 57] use product form queueing network at the PINFM layer for the evaluation of
the response time of BPEL business processes modelled by activity diagrams. Queueing
models are more frequently adopted at the PSNFM layer for the capacity planning of
the target hardware platform at design time.

As discussed above, product form models are also used at run time for the implemen-
tation of self-configuring autonomic computing systems for long-term control horizon.

Tools for Model Derivation. In the literature there exists a quite large set of methodolo-
gies which propose transformation techniques to derive QN-based models (both product
and non-product or LQN) starting from software models. Some of the proposed meth-
ods are reviewed in [1, 10, 13].

Bounds are automatically derived starting from a description of the system behavior
(PIM), and the transformation is implemented with ad-hoc algorithms that use imper-
ative programming languages. Always at design time, product and non-product QN
and LQN can be automatically obtained by using automatic transformations. Examples
can be found in [53] for PINFMs, or in [11, 14, 26, 35, 36, 78] for the derivation of
PSNFMs.

As a general consideration, in these approaches the transformations are often imple-
mented with ad-hoc algorithms that use imperative programming languages. However
in several transformation methodologies and tools it is possible to devise a common
underlying application pattern. In this group of transformations, the source architec-
tural model is represented by a set of UML diagrams. These diagrams are annotated
with ad-hoc or standard performance annotations and then exported in the underlying
XMI/XML format. The transformation is then defined from the XML document of the
source model to an XML model defining the target performance model. The transfor-
mation language is often JAVA or a similar imperative language. However, in some
cases the transformations are defined using XSLT or graph transformation rules [36].

12 D. Ardagna, C. Ghezzi, and R. Mirandola

5 Markov Models

This section illustrates the main Markov Models adopted in Software Engineering for
prediction of non-functional properties. In this context we consider non-functional prop-
erties (performance and reliability). Markov models are stochastic processes defined as
state-transition systems augmented with probabilities. Formally, a stochastic process is
a collection of random variables X(t), t ∈ T all defined on a common sample (proba-
bility) space. The X(t) is the state while (time) t is the index that is a member of set
T (which can be discrete or continuous). In Markov models [17, 41], states represent
possible configurations of the system being modeled. Transitions among states occur
at discrete or continuous time-steps and probability of making transitions is given by
probability distributions. Markov property characterizes these models: it means that,
given the present state, future states are independent of the past. In other words, the
description of the present state fully captures all the information that could influence
the future evolution of the process.

The following sections illustrate three Markov models: Discrete Time Markov Mod-
els, Markov Decision Processes, and Continuous Markov Chains.

DTMC. Discrete Time Markov Chains are the simplest Markovian model where tran-
sitions between states happen at discrete time steps.

Formally a DTMC is a 4-uple < S, s, P, L > where:

– S is the finite set of states.
– s is the initial state.
– P : S × S → [0, 1] is the transition function, where P (s, s′) is the probability of

reach s′ from s.
–

∑
s′∈S P (s, s′) = 1 for all s ∈ S

– L → 2AP is the labeling function, it assign at each s ∈ S the set L(s) of atomic
propositions a ∈ AP holding in s.

A DTMC evolves starting from the initial state executing a transition at each discrete
time instant. Being at time i in a state s, at time i + 1 the model will be in s′ with
probability P (s, s′). The transition can take place only if P (s, s′) > 0.

When software engineers adopt DTMCs they must specify the set of states S and
transitions with an associated probability distribution (probabilities of outgoing transi-
tions in every state must sum up to one). These probability values are numerical param-
eters and represent, for example, the failure rate of a system component.

Figure 4 shows a simple DTMC where:

S =(a,b,c,d) and s = a
AP = (Init, Connect, Fail, Success)
L(a)=Init, L(b)=Connect, L(c)=Fail, L(d)=Success

MDP. Markov Decision Processes [64] are an extension of DTMC that allow multiple
probabilistic behaviors to be specified as output from a state, considering these behav-
iors non-deterministically. First of all, the particular behavior to follow is selected in
every state, consequently, the next state is selected using the probabilities described in

Rethinking the Use of Models in Software Architecture 13

Fig. 4. An example of DTMC, c is a final state

Fig. 5. An example of MDP

the previously selected behavior. Like DTMCs there is a discrete set of states represent-
ing possible configurations of the system being modeled and transitions between states
occur in discrete time-steps, but in each state there is also a nondeterministic choice
between several discrete probability distributions over successor states.

Formally a MDP is a 4-uple < S, s, STEPS, L > where:

– S is the finite set of states.
– s is the initial state.
– STEPS : S → 2ACT×Dist(S) is the transition function, where ACT represents

the set of available non-deterministic transitions and Dist(S) is the set of proba-
bility values over the set S

– L → 2AP is the labeling function, it assigns at each s ∈ S the set L(s) of atomic
propositions a ∈ AP holding in s.

– for all actions a outgoing from a state s,
∑

s′∈S Pa(s′) = 1

As for DTMC, transitions happen at discrete time instants. Figure 5 shows a simple
MDP where:

S =(a,b,c,d) and s=a
AP = (Init, Connect, Fail, Success)

14 D. Ardagna, C. Ghezzi, and R. Mirandola

L(a)=Init, L(b)=Connect, L(c)=Fail, L(d)=Success
Steps(a) = (0.9 →b, 0,1→c)
Steps(b) = (0.25 →c, 0,75→d), (1 →b)
Steps(c) = (1 →c), (1 →c)
Steps(d) = (1 →d)

CTMC. Continuous Time Markov Chains are another extension of DTMC. The model
is similar to the DTMC one, but the temporal domain is continuous. This means that
the time in which a transition occur is not fixed, but depends on some parameter of the
model. The model is specified as a DTMC by means of state and probabilistic transition,
but the value associated to the outgoing transition from a state is intended not as a
probability but as a parameter of an exponential probability distribution. The probability
value thus depends on the time at which the distribution is evaluated. Formally a CTMC
is a 4-uple < S, s, R, L > where:

– S is the finite set of states.
– s is the initial state.
– R : S ×S → R≥0 is the transition function, where R(s, s′) is the coefficient of the

distribution function 1− e−R(s,s′)·t standing for the evolving probability from s in
s′ within t time instants.

– L → 2AP is the labeling function, it assign at each s ∈ S the set L(s) of atomic
propositions a ∈ AP holding in s.

Whenever in a state two or more output transitions are defined, a race-condition oc-
curs. More than one transition is enabled and the output is selected with the probabilities
computed given the actual time instant. First of all, the probability of leaving the state
is computed as (1 − eE(s)·t) where E(s) =

∑
s′∈S R(s, s′) is the sum of all outgoing

coefficients. If the transition is triggered, then the output state probability is computed
as the normalized transition rate.

Updating the CTMC model R(s, s′) with the normalized value P (s, s′) computed as

P (s, s′) =

{
R(s,s′)
E(s) if E(s) �= 0

0 otherwise

we obtain a discrete time model called Embedded DTMC, which represents the
equivalent system at discrete time. This coincides with value of P (s, s′, t) that is
limt→∞ P (s, s′, t).

Figure 6 shows an example of CTMC representing a generic server and its associated
finite queue.

Solving Markovian Models. The solution of Markovian models is based on the eval-
uation of the stationary probability π of each state of the model which can be obtained
by solving a linear set of equations πP = 0 with the normalizing condition

∑
s∈S

πs = 1.

The main problem of Markov models is the explosion of the number of states when
they are used to model real systems. On the other hand, Markov chains are very general
since can include as special cases other modelling approaches. As an example, under

Rethinking the Use of Models in Software Architecture 15

Fig. 6. An example CTMC

the assumptions of the BCMP theorem, the single service center queue of Figure 2,
known also as M/M/1 queue, can be modelled by a CTMC with an infinite number of
states (each state representing the number of customers in the system), and the closed
formulas computed by QN theory are obtained by determining the probability station-
ary conditions of the underlying Markov chains. Furthermore, CTMC can be used to
compute the solution of non-product form QNs. Other models that can be reduced to
Markov models are the families of Stochastic Petri Nets (SPN) and Stochastic Process
Algebras (SPAs) [24]. SPNs are an extension of Petri Nets and allow modelling syn-
chronization in concurrent systems [23]. SPNs are able to model synchronization but
can not model competition in the use of system resources and, with respect to this char-
acteristic, are complementary to QN models. The advantage of SPAs is that they allow
the integration of functional and non-functional aspects in a unified model. A further
class of analysis supported by Markovian models is stochastic model checking, which
is discussed next.

Stochastic Model Checking. Stochastic model checking is an automatic procedure
for establishing if a desired property holds in a probabilistic system model. Conven-
tional model checkers start from a description of a model and a specification (using a
state-transition system and a formula in some temporal logic, respectively) and return
a boolean value, indicating whether or not the model satisfies the specification. In the
case of probabilistic model checking, the models are probabilistic (obtained as a vari-
ant of Markov chains) and they add a probability to the transitions between states. In
this way it is possible to calculate the likelihood of the occurrence of certain events
during the execution of the system. This, in turn, allows quantitative analysis about the
system, in addition to the qualitative statements made by conventional model checking.
Probabilities are modeled via probabilistic operators that extend conventional (timed or
untimed) temporal logic (see next).

The key point of probabilistic model checking is the ability to combine probabilis-
tic analysis and conventional model checking in a single tool. The first extension of
model checking algorithms to probabilistic systems was proposed in the 1980s. How-
ever, work on implementation and tools did not begin until recently, when the field of
model checking matured [46, 47]. Probabilistic model checking draws on conventional
model checking, since it relies on reachability analysis of the underlying transition sys-
tem, but must also entail the calculation of the actual likelihoods through appropriate
numerical methods, such as those employed in performance analysis tools [46, 47].

16 D. Ardagna, C. Ghezzi, and R. Mirandola

Available model checker tools are mainly based on two probabilistic temporal logics,
called Probabilistic Computation Tree Logic (PCTL) [37] and Continuous Stochastic
Logic (CSL) [9].

PCTL. Probabilistic Computation Tree Logic (PCTL), adds to CTL∗ the P operator to
specify the probability that satisfies a formula. PCTL syntax:

– state formula
Φ := true | a | Φ ∧ Φ | ¬Φ | P∼p[Ψ].

– path formula
Ψ :=XΦ | Φ1U≤kΦ2 | Φ1UΦ2.

where p ∈ [0, 1] is a probability, k ∈ N and ∼∈ {<, >,≤,≥}. X, U≤k and U symbols
stands respectively for: next state, bounded until and unbounded until.

A PCTL formula is always a state formula; a path formula is allowed only in a P []
operator.

PCTL semantics: Given s |=M a as a holds in s, semantic of a PCTL formula over a
DTMC M , is as following:

s |=M true holds in each state s ∈ S
s |=M a holds iif a ∈ L(s)
s |=M Φ1 ∧ Φ2 holds iif s |=M Φ1 ∧ s |=M Φ2

s |=M ¬Φ holds iif s �M Φ
s |=M P∼p[Ψ] holds iif Prs{π ∈ PathM (s)| π |=M Ψ} ∼ p
π |=M XΦ holds iif π[1] is defined and π[1] |=M Φ
π |=M Φ1U≤kΦ2 holds iif ∃ 0 ≤ h ≤ k(π[k] |=M Φ2 ∧ ∀ 0 ≤ j < h (π[j] |=M Φ1))
π |=M Φ1UΦ2 holds iif ∃ h ≥ 0(π[k] |=M Φ2 ∧ ∀ 0 ≤ j < h (π[j] |=M Φ1))

where π represents a generic path, π[i] represents the ith state in the path π, Prs{π ∈
PathM (s)| π |=M Ψ} indicate the probability, evaluated taking into account all paths
starting from s, that Ψ will hold.

PCTL is used with DTMC and MDP models, working at discrete time domain. Us-
ing PCTL over a MDP model require to extend the P [] operator with min and max
operators. Thus each path formula is evaluated in the best or in the worst case.

CSL. Continuous Stochastic Logic (CSL) deals with time in a continuous way. The
temporal domain is extended from N to R≥0. Another operator S[] is introduced, stand-
ing for steady-state. CSL sintax:

– state formula
Φ := true | a | Φ ∧ Φ | ¬Φ | P∼p[Ψ] | S∼p[Φ].

– path formula
Ψ :=XΦ | Φ1UIΦ2.

where p ∈ [0, 1] is a probability, I ∈ R≥0 is a non-empty interval and ∼∈ {<, >,≤,≥
}. X and UI symbols indicate respectly: next state and bounded until. Being I defined
over R the unbounded until is a special case of bounded until (U[0,∞]).

Rethinking the Use of Models in Software Architecture 17

CSL semantics: Given s |=M a as a holds in s, semantics of a CSL formula over a
CTMC M , is as following:

s |=M true holds in each state s ∈ S
s |=M a holds iif a ∈ L(s)
s |=M Φ1 ∧ Φ2 holds iif s |=M Φ1 ∧ s |=M Φ2

s |=M ¬Φ holds iif s �M Φ
s |=M P∼p[Ψ] holds iif Prs{π ∈ PathM (s)| π |=M Ψ} ∼ p
s |=M S∼p[Φ] holds iif limt→+∞ Prs{π ∈ PathM (s)| π@t |=M Φ} ∼ p
π |=M XΦ holds iif π[1] is defined and π[1] |=M Φ

π |=M Φ1UIΦ2 holds iif ∃t ∈ I(π@t |=M Φ2 ∧ ∀t′ ∈ [0, t)(π@t′ |=M Φ1))

where π represents a generic path, π[i] represents the ith state in the path π, Prs{π ∈
PathM (s)| π |=M Ψ} indicates the probability, evaluated taking into account all the
paths starting from s, that Ψ will holds, π@t represents the state over the path π at time t.

Accuracy. Markov models include as a special case QN models. Hence, for this sub-
class, the same considerations valid for QN networks also hold for the Markov case. If
the assumptions underlying the BCMP theorem are violated, Markov models provide a
higher accuracy level, but results depend on the characteristics of the software system
under study and cannot be easily generalized. As a general consideration, the accuracy
of Markov models depend on the precision of the state transition probability matrix,
which includes, in real scenario, quite a large number of parameters.

Model Adoption. Similarly to QN models, Markovian models can be used as PINFM
and PSNFM to derive performance and/or reliability metrics [32, 70]. Some recent ex-
tensions of Markov models address the problem of modelling system transients in order
to study burstiness and long range dependency in system workloads. Authors in [67]
introduce matrix-analytic analysis to study a Markovian Arrival Process as input and
Phase Type distribution as service time in a single service center queue. Other studies
(like [71]) focus on the analyses of non-renewal workloads by means on Markov mod-
els but, due to the analysis complexity, only small size models based on one or two
service centers can be dealt with so far. As discussed above, in real systems Markov
models suffer for high computation overhead and, hence, they are presently not suitable
for run time modelling.

Tools for Model Derivation. In the literature there exists several contributions which
propose transformation techniques for Markov models derivation. DTMC, for exam-
ple, can be automatically derived starting from a description of the system behavior
(PIM layer), using the methods and algorithms proposed in [32, 70]. At PSNFM level,
Markov models and Markov decision processes are derived through ad-hoc transforma-
tions in [33, 34].

Some indirect transformations have been defined starting from software models and
deriving GSPN [15, 16, 63], SPA [24] or PRISM models [29, 30]; the resulting models
are then analyzed via to the numerical solution of the underlying Markov chain.

The aforementioned mentioned ad-hoc methods follow transformation patterns sim-
ilar to the ones used for QN models.

18 D. Ardagna, C. Ghezzi, and R. Mirandola

6 Simulation Models

Simulation is a very general and versatile technique to study the evolution of a software
system which is represented by means of a simulation model. Simulation can be adopted
at design time in order to evaluate performance and reliability metrics both in steady
state and in transient conditions.

Simulation requires the development of a simulation program that mimics the dy-
namic behavior of the system by representing the system components and interactions
in terms of functional relations. Non functional attributes are estimated by applying
output analysis methods to a set of observations gathered in the simulation runs.

Simulation results are obtained by performing statistical analyses of multiple runs.
If the goal of the analysis is the steady state of the system, simulation output requires
statistical assurance that the steady state has been reached. The main difficulty is to
obtain independent simulation runs with exclusion of an initial transient period. The two
techniques commonly used for steady state simulation are the ”batch means method”,
and ”independent replication” [39, 48]. None of these two methods is superior to the
other in all cases. Their performance depends on the magnitude of the traffic intensity.
The other available technique is the ”regenerative method”, which is mostly used for its
theoretical nice properties; however, it is rarely applied in actual simulation to obtain
the steady state output numerical results [39, 48].

Simulation output are characterized by confidence intervals which give an estimated
range of values which is likely to include the performance/reliability metrics of interest
for the system. The width of the confidence interval expresses uncertainty about the
quality metric. A very wide interval, e.g, may indicate that more data should be col-
lected during the simulation because nothing very definite can be said about the analy-
sis. The confidence level is the probability value (1 − α) associated with a confidence
interval. It is often expressed as a percentage. For example, say α = 0.05 = 5%, then
the confidence level is equal to (1 − 0.05) = 0.95, i.e. a 95% confidence level.

Very often, simulation is used to evaluate performance metrics of non-product form
QNs. In this case, the simulation program allows the definition of service centers and
network topology and allows analyzing in detail the components behavior which vio-
lates BCMP theorem assumptions. For example, simulation allows analysing the impact
of blocking conditions, or particular routing algorithms (e.g., the execution at the short-
est queue among multiple parallel components). Furthermore, non-Poisson arrival rates
for incoming workload, or heavy tail distributions (e.g., Pareto) for the service demands
characteristics for Web systems can also be considered. Therefore the class of simula-
tion models is much more general than the class of analytical product-form models.
However, the major drawback of simulation with respect to QN models evaluation is
their computational cost [39].

Accuracy. Simulation flexibility in general allows obtaining very accurate results. In-
deed, the system behavior can be intrinsically captured by the simulation model and
the accuracy of the results depends only on the desired confidence level. For example,
some recent proposals can obtain results at an instruction cycle level precision, even for
service center environments [51].

Rethinking the Use of Models in Software Architecture 19

Model Adoption. Simulation models are adopted only at design time since the com-
putational effort is significant both for the model derivation and for the computation
time, especially if confidence internals are narrow. For example, simulation models
have been adopted at the PIM layer in [5, 79] to evaluate the quality of service of com-
posed BPEL processes, starting from the quality profile of the component Web services.
At the PSNFM layer, simulation models are largely adopted also for the validation of
the results of new bounding or approximate analytical solution of QN models [21].

Tools for Model Derivation. Ad-hoc methods have been proposed for the automatic
transformation of software models into simulation models. Examples can be found in
[1, 10]. Translations usually start from UML-like specification of the system and are
mapped into internal representations, built on ad-hoc or general purpose simulation
libraries.

7 Control-Oriented Models

The first step in the formulation of a control system design problem is the derivation
of a mathematical model for the dynamics of the system to be controlled. Therefore so
it is not surprising that the systems and control community can rely on a wide range
of methods and tools for this task. More precisely, in this area it is common practice
to distinguish between the so-called white and black box modelling paradigms. White
box modelling refers to situations in which it is possible to derive the target mathemat-
ical model uniquely on the basis of first principles (e.g., conservation laws). Black box
modelling, on the other hand, refers to situations in which the model for the system is
derived entirely on the basis of data collected from the system itself during dedicated
experiments. Various “shades” of grey box models can also be envisaged, depending on
the needs of the specific application (see, e.g., [52]).

As discussed previously, genuine control-oriented modelling approaches can be used
to accurately model software system transients at run time and to design control laws
which can adjust a system configuration within a very short time frame. These meth-
ods are effective over fine grained control time horizons, e.g., minutes or seconds and,
furthermore, they can formally guarantee both closed-loop stability and performance
specifications.

The first application of system-theoretic modelling methods applied to the manage-
ment of Web services are reported in [2, 3, 68, 73]. Early works focused on system
identification techniques to build a Linear Time Invariant (LTI) model of a software
system, e.g., the software system is described by the following set of equations:

xk+1 = Akxk + Bkuk + Kkek

yk = Ckxk + Dkuk + ek,
(1)

where k is the discrete time index, x ∈ R
n is the state vector, u ∈ R

m is the vector of
control inputs, y ∈ R

l is the vector of measured outputs, and ek is a white process noise.
For example, the output could be the software system response time or utilization, the
input could be the incoming workload and the state could represent the current number
of request in the system. Note that, if black-box models are adopted, it might not be

20 D. Ardagna, C. Ghezzi, and R. Mirandola

possible to derive a “physical” interpretation of the state variables and the goal of the
identification process is to determine a system specification which can accurately model
a set of input-output observations, without any a priory system knowledge.

Identification procedures can be either performed off-line or on-line. In the former
approach, ad-hoc performance tests injecting varying workload and working conditions
on the software system are needed before the production deployment [74]. Vice versa,
in the latter case, on-line methods can determine and adjust the values of the model
parameters (matrices in equation (1)) while the software system is running [75]. In any
case, dynamic models can be built and adopted only when the software is running in
the target environment and hence they can be classified as run time models.

LTI models are usually employed to represent the local linear behaviour of a more
complex non-linear system near a nominal operating condition. The resulting linear
controller design may not suffice to allow the system to meet the target set point when
the software environment is experiencing varying load conditions.

Linear Parameter Varying (LPV) models [50] have been recently proposed as a way
of dealing with this kind of problem. LPV systems are linear time-varying models
whose state space matrices {A(δk), B(δk), C(δk), D(δk)} are fixed functions of some
vector of varying parameters δk. LPV models have been adopted by Qin and Wang
[65, 66] in order to identify a black-box model of a software system and implement an
autonomic controller that can provide performance guarantees by dynamically chang-
ing the operating frequency of the physical servers and admission control, respectively.

Genuine control-theory techniques are very effective over fine grained time horizons.
Recently, authors in [45] implemented a limited lookahead controller based on white-
box models which is also effective on long-term time scales.

Accuracy. The preliminary results provided in the literature [74, 75] have shown that
control-oriented models can be very accurate. In this case, the accuracy is traded-off
with the time granularity (usually lower time granularity are more accurate but intro-
duce a greater system overhead) which is also dependent on the workload intensity and
variability (more variable and intense workloads require finer time grain). Authors in
[74, 75] have shown LPV models introduce an average error in the evaluation of re-
sponse time around 20%.

Model Adoption. Control-oriented models are adopted at run time for the implementa-
tion of closed-loop controllers with the aim to adapt the system configuration to envi-
ronment changing conditions.

Tools for Model Derivation. Transformation tool in this area are still lacking and prob-
ably cannot be provided since the models are built from data measurements in pre-
production/production environments.

8 Model Comparison and Discussion

The models presented in the previous sections are analyzed here according to a set of
characteristics that are relevant for the system architect to drive model selection. To

Rethinking the Use of Models in Software Architecture 21

complete the analysis carried out in Sections 4-7, here we provide a qualitative com-
parison, since the models are heterogeneous (e.g., some are oriented to performance
evaluation while others to reliability) and can be used at different abstraction layers
and/or at different time granularity. The characteristics are:

– Adaptability. Prediction techniques should support efficient performance prediction
under architecture changes where: (i) components are modified, e.g. by introducing
faster components, (ii) homogeneous components are added and the load is evenly
shared among them, (iii) heterogeneous components are added and the load is not
evenly shared (usually faster components receive higher load).

– Cost effectiveness. The approach should require less effort than prototyping and
subsequent measurements.

– Composability. Prediction techniques should be able to make quality predictions
based on the quality characteristics of single components, which together build the
system. For example SOA systems are intrinsically structured hierarchically, hence
quality prediction techniques should be able to exploit this structure in order to
determine the QoS metrics of the whole systems by, possibly, exploiting the results
obtained on lower abstraction layers or on the basis of the results of the analysis of
single components.

– Scalability. Software systems are typically built either with a large set of simple
components or utilize few large-grain, complex components. To predict perfor-
mance attributes, analysis techniques need to be scalable to handle both cases.

The comparison is summarized in Table 2. We adopt a qualitative discrete scale for
the evaluation of the above characteristics, i.e. High, Medium, and Low and the evalua-
tion is justified by the following discussion.

Considering the adaptability characteristic, we have to analyse differently possible
changes in the systems, i.e., modifying components, adding homogeneous components,
and adding heterogeneous components, since these activities have different implica-
tions on the models. Here we consider the adaptability with the aim to determine new
results by using always the same class of models and we do not consider the possibil-
ity to obtain new results through automatic transformations. In other words, the goal
here is the capability to revise the model and obtain a new solution, always remain-
ing in the same model family. Usually in the QN model family, bounding techniques

Table 2. Quantitative Models Qualitative Comparison

Model Family Model Adaptability Cost Effectiveness Composability Scalability
Queueing Models Bound Analysis High High High High

Product form Medium High High Medium/High
Non-product form High High Medium Low
LQN High High High Medium

Markov Models Discrete Time Markov Chains High High Low Low
Continuous Time Markov Chains High High Low Low
Markov Decision Processes High High Low Low
Stochastic Model Checking High High Low Low

Simulation Approaches Simulation High Medium Medim/High Low/Medium
Control-Oriented LTI Medium/Low Low Low High

LPV Medium/Low Low Low High

22 D. Ardagna, C. Ghezzi, and R. Mirandola

and non product form models have a high level of adaptivity. Vice versa, product-form
models are adaptable if faster components or new homogeneous components are in-
troduced in the system, while introducing heterogeneous components usually implies
routing mechanisms which violate the assumption of the BCMP theorem. In that case,
a system update requires to move from product to non-product form models or a dif-
ferent class of models (e.g., simulation). Considering the Markovian models, usually
they provide a high level of adaptability, since a system update can be modelled simply
as a faster service rate or a different probability distribution of the state space. Simula-
tion is intrinsically adaptable since a system change can be implemented by modifying
the program description of the added or updated components. Control-oriented models,
vice versa, have a lower level of adaptability. In particular off-line black-box models
require ad-hoc measurement which cannot be generalized, since the physical meaning
of the system parameters is unknown.

Queuing and Markov models have a high level of cost effectiveness since the model
solutions have a little effort if compared to the prototyping. Simulation has an interme-
diate level of cost effectiveness, since it requires a detailed description of system com-
ponents behavior. The effort required is anyway lower than the one for the prototype
development. Vice versa, control-oriented models have a low level of cost-effectiveness
since they are based on the analysis of real data which have to be experimentally deter-
mined on a real implementation environment.

With respect to composability, the models which are structured hierarchically can
be composed more easily. Vice versa, flat models or models based on very detailed
descriptions (e.g. simulation models, if they are not structured in a modular way) or
based on measurements (control-oriented models) have a lower level of composability.

Finally, with respect to scalability, bounding techniques can provide results for sys-
tems composed by several nodes or classes. Open product form models are scalable,
while closed models have a lower scalability. The models adopted only at design time
require considerable computation time to provide a solution and have a low level of
scalability. Scalability of simulation models depends on the required level of accuracy.
Indeed, the higher is the level of accuracy or narrower are the confidence intervals,
the lower is the scalability. For example, some recent proposals can simulate up to 100
physical server in real service center environments, but in order to provide a solution in a
small time requirement, need to be supported by 40 nodes [51]. Control-oriented models
are also characterized by a high level of scalability. Usually each software component
can be described by a local model. Furthermore, in autonomic system the whole infras-
tructure can be controlled by designing separately multiple local controllers [44, 45].

9 Conclusions and Current Research Challenges

In this paper, we discussed the role of models in software development. We focused on
models that support software engineers reason about non-functional properties (perfor-
mance and reliability). In addition, we focused on evolvable adaptive software systems,
which must reconfigure their structure and behavior to respond to continuous changes
in the requirements and in the environment. Systems of this kind are becoming in-
creasingly relevant in emerging domains, such as pervasive computing applications and

Rethinking the Use of Models in Software Architecture 23

modern distributed information systems for federated organizations. We stressed the
fact that in these settings models are not only used at design time to guide systematic
model-driven software development strategies, but they also need to live at run time.

At design time the goal of performance and reliability models is to provide quanti-
tative predictions of run-time attributes and evaluate the impact of competing architec-
tural choices. At run time, they continue to play an active, crucial role. First, they can
be used as oracles for the implementation; that is, they can check if the behavior of the
real system is correct with respect to the model. For example, the model may contain
a specification of a property that at design time was proved to hold. By monitoring the
real data at run time, it is possible to verify the property and detect a violation. The prop-
erty might be violated because of flaws in the development process, but also because
of (unexpected) dynamic changes that occurred in the environment. The violation, in
turn, might trigger reconfiguration mechanisms that are performed autonomically by
the running application in a self-managed manner, to achieve a self-healing behavior.
These topics are currently actively investigated.

We are presently involved in research in this area. In particular, we are interested in
casting the problem in the model-driven framework. We do so by collecting data at run
time through monitoring, with the goal of supporting a dynamic update of the model.
For example, the reliability of a certain channel whose initial estimate (contained in
the current design model) may turn out to be inaccurate by examining real-world data.
As another example, the probability associated with a certain transition of the model
(e.g., a DTMC) may turn out to be wrong in the real world. In the examples, the data
gathered by the run-time monitor may generate a feedback that provides a re-calibration
of the model, and consequently the generation of a better new implementation. As a
result, the model-driven process becomes a roundtrip from model to implementation
and back, which progressively tunes the implementation in an attempt to provide a
dynamic adaptive model-driven development strategy. Although this approach looks
very appealing and some initial promising results have been obtained, further research
is needed to develop a coherent approach that can solve the overall problem.

Acknowledgments

This work has been partially supported by the project Q-ImPrESS and S-Cube NoE
funded under the European Union’s Seventh Framework Programme (FP7). The au-
thors are grateful to Mara Tanelli and Marco Lovera for fruitful discussions on control-
oriented models. Thanks are also expressed to Elisabetta Di Nitto for insightful com-
ments on the organization of the work.

References

1. Wosp : Proceedings of the international workshop on software and performance (1998-2007)
2. Abdelzaher, T., Lu, Y., Zhang, R., Henriksson, D.: Practical application of control theory

to web services. In: Proceedings of the 2004 American Control Conference. Boston, USA
(2004)

24 D. Ardagna, C. Ghezzi, and R. Mirandola

3. Abdelzaher, T., Shin, K.G., Bhatti, N.: Performance Guarantees for Web Server End-
Systems: A Control-Theoretical Approach. IEEE Transactions on Parallel and Distributed
Systems 15(2) (March 2002)

4. Abrahao, B., Almeida, V., Almeida, J., Zhang, A., Beyer, D., Safai, F.: Self-Adaptive SLA-
Driven Capacity Management for Internet Services. In: Proc. NOMS (2006)

5. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes. IEEE Trans-
actions on Software Engineering 33(6), 369–384 (2007)

6. Ardagna, D., Trubian, M., Zhang, L.: SLA based resource allocation policies in autonomic
environments. Journal of Parallel and Distributed Computing 67(3), 259–270 (2007)

7. Atkinson, C., Kuhne, T.: Model-driven development: A metamodeling foundation. IEEE
Software 20(5), 36–41 (2003)

8. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. Dependable Sec. Comput. 1(1), 11–33
(2004)

9. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov chains.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer,
Heidelberg (1996)

10. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: A survey. IEEE Trans. Software Eng. 30(5), 295–310 (2004)

11. Balsamo, S., Marzolla, M.: A Simulation-Based Approach to Software Performance Mod-
eling. In: ESEC/FSE-11: Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposium on Foundations of software
engineering, pp. 363–366. ACM Press, New York (2003)

12. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks
of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

13. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance prediction of component-
based systems - a survey from an engineering perspective. In: Reussner, R., Stafford,
J.A., Szyperski, C.A. (eds.) Architecting Systems with Trustworthy Components. LNCS,
vol. 3938, pp. 169–192. Springer, Heidelberg (2006)

14. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with the palla-
dio component model. In: WOSP, pp. 54–65. ACM, New York (2007)

15. Bernardi, S., Donatelli, S., Merseguer, J.: From uml sequence diagrams and statecharts to
analysable petri net models. In: WOSP 2002: Proceedings of the third international workshop
on Software and performance, pp. 35–45. ACM Press, New York (2002)

16. Bernardi, S., Merseguer, J.: Performance evaluation of uml design with stochastic well-
formed nets. Journal of Systems and Software 80(11), 1843–1865 (2007)

17. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queuing Network and Markov Chains. John
Wiley, Chichester (1998)

18. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, Reading (1988)

19. Cardellini, V., Casalicchio, E., Grassi, V., Mirandola, R.: A framework for optimal service
selection in broker-based architectures with multiple QoS classes. In: Services computing
workshops, SCW 2006, pp. 105–112. IEEE computer society, Los Alamitos (2006)

20. Casale, G.: An efficient algorithm for the exact analysis of multiclass queueing networks
with large population sizes. In: SIGMETRICS/Performance, pp. 169–180 (2006)

21. Casale, G., Muntz, R., Serazzi, G.: Geometric bounds: A noniterative analysis technique for
closed queueing networks. IEEE Trans. Comput. 57(6), 780–794 (2008)

22. Chen, P.P.-S.: The entity-relationship model—toward a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976)

23. Chiola, G., Marsan, M.A., Balbo, G., Conte, G.: Generalized stochastic petri nets: A defini-
tion at the net level and its implications. IEEE Trans. Softw. Eng. 19(2), 89–107 (1993)

Rethinking the Use of Models in Software Architecture 25

24. Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras. In: Bernardo,
M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg
(2007)

25. Cortellessa, V., Marco, A.D., Inverardi, P.: Integrating performance and reliability analysis
in a non-functional mda framework. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 57–71. Springer, Heidelberg (2007)

26. Cortellessa, V., Mirandola, R.: PRIMA-UML: a performance validation incremental method-
ology on early UML diagrams. Sci. Comput. Program. 44(1), 101–129 (2002)

27. Cunha, I., Almeida, J., Almeida, V., Santos, M.: Self-Adaptive Capacity Management for
Multi-Tier Virtualized Environments. In: Proc. Integrated Management (IM) (2007)

28. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–646 (2006)

29. Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality prediction of service com-
positions through probabilistic model checking. In: Becker, S., Plasil, F. (eds.) QoSA 2008.
LNCS, vol. 5281, pp. 119–134. Springer, Heidelberg (2008)

30. Gilmore, S., Kloul, L.: A unified tool for performance modelling and prediction. Reliability
Engineering and System Safety 89, 17–32 (2005)

31. Gordon, W.J., Newell, G.F.: Closed queueing networks with exponential servers. Operat.
Res 15, 252–267 (1967)

32. Grassi, V.: Architecture-based reliability prediction for service-oriented computing. In: de
Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III. LNCS,
vol. 3549, pp. 279–299. Springer, Heidelberg (2005)

33. Grassi, V., Mirandola, R.: Uml modelling and performance analysis of mobile software ar-
chitectures. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 209–224.
Springer, Heidelberg (2001)

34. Grassi, V., Mirandola, R.: Derivation of markov models for effectiveness analysis of adapt-
able software architectures for mobile computing. IEEE Trans. Mob. Comput. 2(2), 114–131
(2003)

35. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and performance-
reliability models of component-based systems: A model-driven approach. Journal of Sys-
tems and Software 80(4), 528–558 (2007)

36. Gu, G.P., Petriu, D.C.: From uml to lqn by xml algebra-based model transformations. In:
WOSP 2005: Proceedings of the 5th international workshop on Software and performance,
pp. 99–110. ACM Press, New York (2005)

37. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects
of Computing 6(5), 512–535 (1994)

38. Jackson, J.: Jobshop-like queueing systems. Management Science 10(1), 131–142 (1963)
39. Jain, R.: The Art of Computer Systems Performance Analysis–Techniques for Experimental

Design, Measurement, Simulation, and Modeling. Wiley-Interscience, Chichester (1991)
40. Kerola, T.: The composite bound method for computing throughput bounds in multiple class

environments. Performance Evaluation 6(1), 1–9 (1986)
41. Kleinrock, L.: Queueing Systems. John Wiley and Sons, Chichester (1975)
42. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42 (2007)
43. Kramer, J., Magee, J.: Concurrency: State Models Java Programs, 2nd edn. Worldwide Series

in Computer Science. John Wiley Sons, Chichester (2006)
44. Kusic, D., Kandasamy, N.: Risk-Aware Limited Lookahead Control for Dynamic Resource

Provisioning in Enterprise Computing Systems. In: ICAC 2006 Proc. (2006)
45. Kusic, D., Kephart, J.O., Kandasamy, N., Jiang, G.: Power and Performance Management of

Virtualized Computing Environments Via Lookahead Control. In: ICAC 2008 Proc. (2008)

26 D. Ardagna, C. Ghezzi, and R. Mirandola

46. Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In: Proc. 6th joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE), pp. 449–458. ACM Press,
New York (2007)

47. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)

48. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. McGrawHill, New York
(2000)

49. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Perfor-
mance: Computer System Analysis Using Queueig Network Models. Prentice-Hall, Engle-
wood Cliffs (1984)

50. Lee, L., Poolla, K.: Identification of linear parameter-varying systems using nonlinear pro-
gramming. ASME Journal of Dynamic Systems, Measurement and Control 121(1), 71–78
(1999)

51. Lim, K., Ranganathan, P., Chang, J., Patel, C., Mudge, T., Reinhardt, S.: Understanding and
designing new server architectures for emerging warehouse-computing environments. In:
International Symposium on Computer Architecture, pp. 315–326 (2008)

52. Ljung, L.: Perspectives on System Identification. In: 2008 IFAC World Congress, Seoul,
Korea. (to appear, 2008)

53. Marco, A.D., Inverardi, P.: Compositional generation of software architecture performance
qn models. In: WICSA, pp. 37–46. IEEE Computer Society, Los Alamitos (2004)

54. Marco, A.D., Mirandola, R.: Model transformation in software performance engineering. In:
Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 95–110.
Springer, Heidelberg (2006)

55. Marzolla, M., Mirandola, R.: Performance prediction of web service workflows. In: Over-
hage, S., Szyperski, C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880,
pp. 127–144. Springer, Heidelberg (2008)

56. Menasce, D.A., Almeida, V.A.: Capacity Planning for Web Performance: Metrics, Models
and Methods. Paperback (2001)

57. Menascé, D.A., Dubey, V.: Utility-based qos brokering in service oriented architectures. In:
ICWS, pp. 422–430 (2007)

58. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electr. Notes Theor. Comput.
Sci. 152, 125–142 (2006)

59. Object Management Group. OMG model driven architecture. (May 2006),
http://www.omg.org/mda/

60. O.M.G. OMG.: UML Profile for Schedulability, Performance and Time 2005,
http://www.omg.org/cgi-bin/doc?formal/2005-01-02

61. O.M.G. OMG.: UML Profile for Modeling and Analysis of Real-Time and Embedded Sys-
tems. ptc/07-08-04 (2007)

62. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn.
McGraw-Hill, New York (2002)

63. Pooley, R.: Software engineering and performance: a road-map. In: ICSE - Future of SE
Track, pp. 189–199 (2000)

64. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
65. Qin, W., Wang, Q.: An LPV approximation for admission control of an internet web server:

identification and control. Control Engineering Practice 15(12), 1457–1467 (2007)
66. Qin, W., Wang, Q.: Modeling and control design for performance management of web

servers via an LPV approach. IEEE Transactions on Control Systems Technology 15(2),
259–275 (2007)

http://www.omg.org/mda/
http://www.omg.org/cgi-bin/doc?formal/2005-01-02

Rethinking the Use of Models in Software Architecture 27

67. Riska, A., Squillante, M., Yu, S.Z., Liu, Z., Zhang, L.: Matrix-Analytic Analysis of a
MAP/PH/1 Queue Fitted to Web Server Data. In: Latouche, G., Taylor, P. (eds.) Matrix-
Analytic Methods: Theory and Applications, pp. 335–356. World Scientific, Singapore
(2002)

68. Robertsson, A., Wittenmark, B., Kihl, M., Andersson, M.: Admission control for web server
systems - design and experimental evaluation. In: 43rd IEEE Conference on Decision and
Control (2004)

69. Rolia, J.A., Sevcik, K.C.: The method of layers. IEEE Transactions on Software Engineer-
ing 21(8), 689–700 (1995)

70. Sato, N., Trivedi, K.S.: Stochastic modeling of composite web services for closed-form
analysis of their performance and reliability bottlenecks. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 107–118. Springer, Heidelberg
(2007)

71. Shwartz, A., Weiss, A.: Multiple time scales in markovian ATM models i. Formal calcula-
tions (1999)

72. Smith, C.U., Williams, L.G.: Performance and Scalability of Distributed Software Architec-
tures: an SPE Approach. Addison Wesley, Reading (2002)

73. Abdelzaher, J.S.T., Lu, C., Zhang, R., Lu, Y.: Feedback Performance Control in Software
Services. IEEE Control Systems Magazine 23(3), 21–32 (2003)

74. Tanelli, M., Ardagna, D., Lovera, M.: LPV model identification for power management of
web service systems. In: 2008 IEEE Multi-conference on Systems and Control, San Antonio,
USA (to appear, 2008)

75. Tanelli, M., Ardagna, D., Lovera, M.: On- and off-line model identification for power man-
agement of Web service systems. In: 47th IEEE Conference on Decision and Control, Mexico
(to appear, 2008)

76. Tratt, L.: Model transformations and tool integration. Software and System Modeling 4(2),
112–122 (2005)

77. Urgaonkar, B., Pacifici, G., Shenoy, P.J., Spreitzer, M., Tantawi, A.N.: Analytic modeling of
multitier Internet applications. ACM Transaction on Web 1(1) (January 2007)

78. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T., Merseguer, J.: Performance
by unified model analysis (puma). In: WOSP 2005: Proceedings of the 5th international
workshop on Software and performance, pp. 1–12. ACM Press, New York (2005)

79. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware middleware
for web services composition. IEEE Trans. on Software Engineering 30(5) (May 2004)

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 28–42, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Design Reasoning Improves Software Design Quality

Antony Tang1, Minh H. Tran1, Jun Han1, and Hans van Vliet2

1 Swinburne University of Technology, Melbourne, Australia
{atang,mtran,jhan}@ict.swin.edu.au

2 VU University, Amsterdam, The Netherlands
hans@cs.vu.nl

Abstract. Making justifiable decisions is a critical aspect of software architec-
ture design. However, there has been limited empirical research on the effects
of design reasoning on the quality of software design. The goal of this work is
to investigate if there is any quality improvement to software design when
design reasoning is applied. We conducted an empirical study involving twenty
designers, the designers were asked to design a user interface and their designs
were scored and compared. The results showed that the test group that was
equipped with design reasoning produced a higher quality design than the
control group, especially for inexperienced designers.

Keywords: Design Reasoning, Software Architecture Design, Usability.

1 Introduction

Software designers tend to base their judgments on prior beliefs and intuition rather
than a logical reasoning process. This tendency is common to human thinking and has
influenced the performance of many people’s reasoning and decision making [1]. In
this paper, we demonstrate that software design is subject to the same cognitive bias,
and therefore can affect the quality of its results. Through an empirical study, we show
that the design quality can be improved with a simple design reasoning approach.

Recent research, especially in the area of software architecture, has shown that
design reasoning and design rationale are important [2]. Design reasoning supports
designers in making justifiable decisions by explicitly modeling design rationale as a
first-class entity [3]. Functional and quality requirements are considered in such
methods, and decision making techniques such as trade-off analysis are used to select
a solution that best suits the design criteria. It is argued that design rationale should be
captured explicitly, together with the decisions taken and the resulting design. They
constitute the software architectural knowledge [4].

This research explores how design reasoning affects the quality of design outcome.
In exploring this issue, we have carried out an empirical study with the usability
quality attribute. Usability is an important quality attribute in software architecture
[5, 6]. It is concerned with whether users are able to use a system to perform their
tasks effectively, efficiently and with satisfied experience.

We hypothesize that by applying a design reasoning process, designers would come
up with a more usable UI. The study was conducted with two groups of designers who

 Design Reasoning Improves Software Design Quality 29

have similar design experience. The control group carried out the design as they
usually do, whilst the test group carried out the tasks using a design reasoning
approach. The results have demonstrated that the use of a reasoning approach has, on
average, improved design quality. Especially for relatively inexperienced designers,
the improvement is noteworthy. For them, design reasoning provides a framework for
deliberation and supports building up and maintaining a mental image of the ongoing
design. Experienced designers have less need for such assistance, they simply “know”
how to proceed [7].

The remaining of the paper is organized as follows. Section 2 discusses the
concepts of design reasoning and the related work in usability design reasoning.
Section 3 presents the empirical study and the findings. Section 4 discusses the
lessons that we have learned from applying design reasoning to software design. We
conclude the paper in section 5.

2 Related Work

2.1 Design Reasoning

Researchers in psychology have proposed that there are two distinct cognitive systems
underlying reasoning. System 1 (heuristic system) comprises a set of autonomous
subsystems that include both innate input modules and domain-specific knowledge
acquired by a domain-general learning mechanism. System 2 (analytic system) allows
reasoning according to logical standards [1]. Together they form the dual process
theory that explains people’s “rational thinking failure” when people rely heavily on
prior beliefs and intuition rather than a logical reasoning process [8, 9]. These findings
are also confirmed in a more recent study on decision making in software design where
designers make use of rational and naturalistic decision making tactics [10].

In software development, design reasoning is an important process that designers
use in developing a solution. Designers in the software industry often rely on intuition
and experience to make design decisions. The drawback of such an approach is that
the quality of decisions would heavily depend on the experience and expertise of the
individuals. Since design rationale plays an important role in making design decisions
[2, 11], understanding what constitutes design rationale is important to producing a
good design. Rittel and Webber [12] view design as a process of negotiation and
deliberation. They suggest that design is a “wicked problem” in which there is no
well-defined set of potential solutions, so it is important that a designer learns how to
handle and weigh alternatives.

There are different approaches to design reasoning. One approach is by way of
argumentation. The basic argumentation-based representation is to use nodes and
links to represent knowledge and relationships. Examples of this approach are QOC
[13], DRL [14] and gIBIS [15]. A second approach is by way of using rationale
template to capture design reasoning. This approach incorporates standard templates
into the design process to facilitate design rationale capture. This approach is oriented
towards the practical implementation of design rationale in industry. Examples are
Architecture Decision Description Template [16] and Views and Beyond [17]. A third
approach is a hybrid of the first two approaches. Examples of this approach are AREL
[18] and Archium [4].

30 A. Tang et al.

Fig. 1. AREL – A Design Reasoning Model

Whilst there are different approaches to design reasoning, the concepts presented in
AREL are common to current research thinking [4, 19]. In the rest of this section, we
introduce the AREL model, which concepts we used in the empirical study. In this
model, there are three key elements to be considered: design concerns, design
decisions and design outcomes (Fig. 1).

Design concerns are concerns that motivate the creation of a design solution.
Design concerns are the causes for design decisions to be made. A design concern
may be a system requirement, a business goal, a quality attribute such as usability, a
circumstance that influences a design, or an existing design component that exerts
some design constraints.

A design decision is made by a designer when assessing why a particular design is
created or chosen. Capturing this knowledge is important because it justifies the
design and explains the reasons to those who do not have intimate knowledge of the
design - users, testers and maintainers. The key information contained in the design
decisions are the design issues, design assumptions, design constraints, and design
rationale for the selection or rejection of a design option. The links (Fig. 1) between
design concerns and design decisions indicate what design concerns are considered in
a decision. The results of the design decisions, i.e. design outcomes, are linked to the
design decisions because the outcomes are the results of a decision.

Design outcomes are the results of a design decision: chosen design is the design
that has been selected, and it contains the design elements such as components,
classes and database schemas that would be implemented; alternative design is the
design options that have been considered but rejected. Capturing all the design
options, including the rejected alternative design, are important for three reasons: (a) a
comprehensive consideration of all available options shows that the designer has not
omitted any viable design option; (b) documenting design options can support design
backtracking if an initial design solution is unviable when more details are
considered; (c) identifying different design options allow design trade-off analysis to
be performed to justify the selection of the most appropriate design option.

2.2 User Interface Usability

The quality of UI designs has been considered as an important aspect of software
architecture. Research has shown that in UI design, designers are required to make
decisions on selecting design options in one way or another [20-24]. However,
existing UI design lifecycle models provide very limited guidelines that help

 Design Reasoning Improves Software Design Quality 31

designers reason about design options and make justifiable design decisions. UI
design reasoning is something that has always been assumed and intuitive.

Recent studies have pointed out that the outcome of UI design includes both the
resulting interface itself and a rationale for why the interface is chosen. Howard’s
exploratory study [22] identifies key elements, including environment, focus and
agents, which are often taken into account when designers make tradeoff decisions.
Howard’s study also models a behavioral process of which designers make an
argument in choosing between two key elements. MacLean et al. [24] examine a
representation of design rationale. They have developed a semi-formal notation that
allows designers to represent explicitly design options and reasons for choosing from
amongst them. However, to the best of our knowledge, there is no empirical evidence
concerning how design reasoning influences UI design quality.

3 An Empirical Study

The objective of this study was to explore the effects of design reasoning on the
quality of design. To do so, we asked the participants to design a user interface for a
commercial system. The case was carefully chosen and simplified to make sure that it
makes sense to the participants and it was not so simple that it could be designed
without careful considerations.

We have been working with an automotive company to develop a Web-based system
to monitor test vehicles of a fleet. The key function of the system is to allow car
engineers to monitor electronic signals collected from the electronic control units (ECUs)
in a vehicle. Through a UI, an engineer is able to prepare a monitoring schedule which
specifies the information to be monitored. Each monitoring schedule must contain a
minimum of 1 request and a maximum of 99 requests (i.e. requirement R1). Engineers
would search and select the electronic signals from a search list of 1700 signals when
specifying requests (i.e. requirement R2). A request specifies what electronic signals need
to be monitored and monitoring start and stop conditions (i.e., requirement R3). Other
requirements such as the insertion and deletion of monitoring conditions and signals were
given to the participants but we do not describe them in detail here.

3.1 Participants

The study involves twenty participants. We used a convenient sampling method to
invite practitioners in the software industry and academia to participate in the study.
The participants were allocated randomly to two groups: test group and control
group. The average design experience of the test group and the control group are 8.95
years and 8.40 years, respectively.

3.2 Experiment Procedure

Both the control group and the test group were asked to design a UI for the
monitoring system. The groups were given the following: (a) a set of requirements for
the design; (b) usability requirements; and (c) UI controls that can be used in the
design. We carried out the experiment with each participant individually.

The control group carried the design as they usually do. The test group was briefed
about the design reasoning process and they were asked to apply the principles of

32 A. Tang et al.

design reasoning. In the briefings, we described the design reasoning principles of
AREL without referring to its formal model. During the experiment when the
participants reach a design decision point, they need to explain their design options
and issues, and justify why they chose a particular design option over other
alternatives. As the participants justified their design decisions, the interviewers did
not give any hints on how to design nor engaged in discussing the quality of the
participants’ design. However, the interviewers would ask the following questions to
ensure that reasoning was applied: “What are the issues in the decision?” and “What
are the options to deal with the issues?”

Participants in both the test and control group were asked to use a think-aloud
protocol [25] to describe their design strategies. At the end of the design session, the
participants were interviewed for their comments. In the interview, we used the
Retrospective Think Aloud (RTA) technique [26] to gather participants’ comments on
their own designs after they had completed the tasks. We timed each design session,
starting from when the participants commenced the design process until they
completed the design, excluding the briefing and the interview.

Both quantitative and qualitative data were collected in the study. The quantitative
data included details of the participants’ experience, duration taken to complete their
tasks, the levels of their satisfaction and confidence in their own designs and the
quality scorings of their designs. The qualitative data was collected from the
participants’ think-aloud process, our assessment of the participants’ design, our
observation of the participants’ design process, and the participants’ comments.

3.3 Findings

We analyzed the test results from three perspectives: the quality of the design
outcomes, the design process and the participants’ feedbacks.

3.3.1 Design Outcomes
With each UI design, we assess the quality of the design based on three (out of ten)
UI design heuristics proposed by Nielsen [27]: (a) consistency; (b) flexibility; (c)
accessibility. For instance, we assess design consistency by inspecting if participants
used UI controls (e.g. scroll-bars, buttons) consistently across the design. For the
purpose of this study, we have selected only three most relevant usability heuristics.

For each participant’s design, we rated the usability based on the selected
heuristics. For each heuristic, we used a 5-point Likert scale ranging from 0 to 4, with
4 being the best design. Thus, the top score of a design is 12 and the worst score is 0.
The rating process was done by comparing how well each design conforms to the
heuristics. When scoring the designs, we scored and compared the designs
irrespective of which group they come from to ensure that the scorings were
consistent and unbiased.

We hypothesize that the test group who equipped with design reasoning would
produce better quality design than the control group. If m1 is the average score of the
test group and m2 is average score of the control group, the hypotheses are:

H0: m1 = m2

H1: m1 > m2

 Design Reasoning Improves Software Design Quality 33

Table 1. Test and Control Group Design Quality Scores

 n Mean Score Std. dev. Wilcoxon Test

Test Group 10 9.10 1.52

Control Group 10 7.10 1.91
p = 0.02

The null hypothesis H0 states that the quality of the UI design created by the

control group is the same as the test group. The average scores of the control group is
7.10, and that of the test group is 9.10. The one-tailed Wilcoxon1 [28] test shows that
there is a significant difference in design quality between the test and control groups
with p < 0.0252 (see Table 1). Since the one-tailed Wilcoxon test is significant, we
reject H0 and accept the alternative hypothesis H1. The conclusion is that the
application of a design reasoning process has improved the quality of a UI design.

In order to understand what quality aspects of the design are different between the
two groups, we analyze each participant’s design. There are two key design issues
involved and both of them are concerned with usability:

• (R1) catering for between 1 and 99 monitoring requests; and
• (R2) determining how to search for 1700 vehicle signal(s) and selecting them for

monitoring and monitor triggering.

Test Group. All participants in the test group used the rationale-based approach to
design for the given requirements. In designing for requirement R1, the participants
selected either a scrollable tab or a side-located expandable list to display and select a
request. The participants had initially considered different design options such as a
pop-up list, a list-table in the center of the page and a dropdown list. These options
had been discarded after the participants considered the usability issues as part of the
design reasoning process.

In designing for requirement R2, all participants except one in the test group used a
pop-up window to specify the monitoring signals. Although other design options such
as a dropdown list and a button-control had been considered by the participants, they
decided that only one compromised solution is viable. This is because of the
combination of constraints that are present: limited screen real-estate, the need to
copy specified signals to multiple controls, and reusable programs. Some participants
explored each branch of an option in detail and backtracked when the options became
unviable. Overall, all participants have created a similar design. They have articulated
similar issues related to usability. Most of them have identified a similar set of design
options with minor variations. These minor variations are the placements of controls
such as “buttons” and “tables”.

There was one exception in the group. This design used a menu driven approach.
Although the UI was still usable, it did not conform to the Nielsen UI design
heuristics and therefore the scores of this design were lower.

1 Wilcoxon’s test is a non-parametric test suitable for comparing ranked data that makes no

assumption about their distribution .
2 We used the standard test of significance at 0.05. For one-tailed test of H1 in our case, the

significance is at 0.025.

34 A. Tang et al.

Control Group. In comparison to the test group, the control group produced much
more diverse and less usable designs. First, as for designing UI to handle multiple
requests (i.e., requirement R1), four varieties of design were proposed, including:

• A textual list: Requests are organized in the form of a hyperlink list on one side
of the screen, whilst the rest of the screen estate displays details of a request.

• Graphical icons: Requests are represented as graphical icons numbered from 1
to 99. In this design, it takes the entire screen estate to show 99 icons.

• A textbox: There is no list to show an overview of all requests. Users retrieve
details of a request by entering a unique identification of the request into the
provided textbox. This design saves screen estate, but requires users to
remember identifications of all requests.

• A dropdown list: A dropdown list shows all requests. This design saves screen
estate, but scrolling down a long list of requests could be inconvenient.

Amongst these design variations, only the textual list is usable, and four out of ten
participants in the control group ended up with this design. In the other six designs
where the usability was low, the participants designed for multiple requests after they
had finished designing for an individual request. In these cases, they did not
reconsider if their individual request design fits multiple requests.

Second, for searching and selecting signals to specify a request (i.e., requirement
R2), the control group derived three discrete designs, including:

• Pop-up window: Buttons are included in different sections of a request (e.g.,
start condition, monitoring list and stop condition). When users click on a
button, a pop-up window is displayed allowing users to select one or more
signals to add to a particular section of the request.

• Sequential pages: Users must first search and select signal(s) that they want to
monitor, and move to different pages to paste the information.

• Tabbed windows: Tabs are used to provide different functionalities. For
example, the first tab shows a grid of all available signals from which users can
choose, the second tab shows a list of users’ selected signals, and the third tab
shows start and stop monitoring conditions. Users click between them to copy
signal information.

Out of these three designs, the pop-up window mechanism is the most suitable for
the system, because it allows users to select signals with minimal mouse clicks and
errors. Only five out of ten participants of the control group used a pop-up window as
a means of searching and selecting signals.

3.3.2 Designers’ Experience and Design Quality
Using the quality scores of the participants in the test group and the control group, we
analyzed the relationships between their quality scores and their design experience.
The results are shown in Fig. 2. The solid diamonds depict those who used design
reasoning, and the hollow squares depict those who did not use design reasoning.

We notice that above the 5 year experience mark, the quality scores of the two
groups are similar. They mostly score between 8 and 10 with some outliers. However,
there is a noticeable difference in quality between the two groups of participants

 Design Reasoning Improves Software Design Quality 35

0

2

4

6

8

10

12

0 5 10 15 20 25 30

Years of Experience

D
es

ig
n

 Q
u

al
it

y

With DR

Without DR

Fig. 2. Design Quality Scores and Years of Experience

having less than 5 years of experience. The majority of the participants in the control
group in this category scores between 6 and 8, and the majority of the test group in
this category scores between 8 and 10. These results indicate that design reasoning
helps less experienced designers to design better.

It is interesting to observe that the two most experienced designers did not produce
the best designs. Both entered into the information technology field in the era of batch
processing systems, way before graphical user interfaces (GUI) became an issue.
Their design knowledge was formed in that pre-GUI era, and seems not changed all
that much thereafter. This was confirmed by their actions and thinking-aloud during
the experiments.

3.3.3 Design Process
We compare the duration that the two groups took to finish their tasks. On average,
the test group took 39.30 minutes and the control group took 29.40 minutes. The
Wilcoxon test shows no significant difference between the time spent by the test and
the control group with p > 0.05 (see Table 2). That means both groups took a similar
amount of time to finish their tasks.

Table 2. Test and Control Group Design Time

 n Mean Time (min) Std. dev. Wilcoxon Test

Test Group 10 39.30 10.86

Control Group 10 29.40 10.08
p = 0.113

In addition, we considered the design processes of the two groups as described below.

Test Group. During the study, the test group was required to state their design
options and design issues explicitly, and to justify why they made a particular
decision at every design point. For example, when they explained the issues of the

36 A. Tang et al.

initial design, they would say something like: “how do I organize the UI to show 99
requests when they cannot all be displayed at the same time” or “how do I copy data
from the signal search screen in a way that is easy to use” or “how many clicks are
required to get the job done”. They contemplated their initial design and reasoned
about what it could and could not do. In some cases, participants believed that the
initial design was adequate. However, when the participants consciously tried to find
more design options, they often came up with alternative designs. There were many
cases in the experiments in which such alternatives became the final design. However,
there were cases when the design alternatives had helped to reinforce that the initial
design was more appropriate when all alternative designs seem to be inferior.

After verbalizing the issues, the participants of the test group seemed to have a
mental picture of those issues. The participants often considered how these issues
conflict or work with each other in the design. The explicit verbalization of design
issues and options helps the thought process when the participants started to formulate
design options and to backtrack when certain design issues cannot be resolved. For
instance, one participant explored the design issue of listing the 99 requests first and
then he examined the issue of displaying and editing a single request, and finally the
searching of signals. At every decision point, he would backtrack to assess if the
chosen design options would work. This backtracking and verification of design
options seemed quite natural to the participants of the test group when the issues and
options were explicitly stated.

Control Group. The participants of the control group were not asked to state design
issues and justify their decisions. We observed different design behavioral patterns
depending on the experience of the designers. The first pattern was that most
participants’ initial design became their final design, especially for designers who are
less experienced. Unlike the test group, the control group’s design approach was
based heavily on their intuition and on their first impression. The participants
appeared to adhere to their initial designs, from where they continued to design for
additional requirements. After each decision point, the inexperienced participants
especially, spent little efforts on reassessing the consequences of additional changes
to the initial design.

The second pattern was that even though the control group was aware of the
usability guidelines, most of them did not consider the usability requirements at every
decision point. We realized that the participants talked about the usability
requirements initially but they became less conscious of them as the design
progressed. The more experienced designers in this group were the exceptions.

3.3.4 Participants’ Feedbacks
In the follow-up interviews after the design session, all the participants were asked to
comment on two things:

(a) “What are your key considerations for the design?”
(b) “Do you have any comments on the design process you went through in this

exercise?”

In response to question (a), all participants of the test group mentioned that the
usability of the UI was a key issue because of the complexity of the requirements and

 Design Reasoning Improves Software Design Quality 37

the limited screen real-estate. Most participants said that the ease of use and
understanding was another key issue and argued that minimal user clicks and minimal
UI screens should be provided. Some of the participants also considered that the
design should be reusable, particularly the signal search function.

Similar to the test group, the participants of the control group also commented that
usability requirements were key to their design. In fact, a list of important usability
concerns drawn from the control group was very similar to that of the test group. A
convergence in the participants’ comments on question (a) indicated that even though
both groups of participants were aware of the usability requirements, they had very
different approaches to tackling them. The participants in the test group were asked to
explicitly state their design issues and design options, and their final designs were
more consistent and more usable. Whereas with the control group, the participants
carried out the design the way they normally do, the results among the participants
were less consistent and showed an inadequate level of usability.

In response to question (b), some participants of the test group commented that
well stated design issues helped them think through the design. Nine out of the ten
participants in this group mentioned that the exploration of design options had helped
their design. When they were asked why this was so, the general suggestion was that
the design options allowed them to assess what would and would not work. In the
control group, the inexperienced participants had very little comments on their design
process, whilst experienced designers in this group were able to describe their
requirement analysis and design process.

After the participants had completed their tasks, they were asked to rate their
satisfaction with their own designs, using a seven-point Likert scale where 1 is not
satisfied and 7 is fully satisfied. The test group reported an average of 5.7 and the
control group reported an average of 4.9. When the participants were asked how
confident they were on the usability of their design, using a seven-point Likert scale
where 1 is not confident and 7 is fully confident, the test group reported an average
of 5.1 and the control group reported an average of 5.5.

Although the test group was more satisfied with their design, they were slightly
less confident about it than the control group. We cannot offer any explanations
for this outcome, except by showing that the differences between the two group’s
ratings are statistically insignificant. The Wilcoxon test results show that there is
no significant difference between the two groups’ ratings on either the satisfaction
or confidence of their design, p = 0.142, and p = 0.34 respectively. This finding
shows that participants from both groups were similarly confident and satisfied
with their own designs despite the differences in the design qualities (as reported
in Section 3.3.1).

4 Discussions of the Findings

The primary objective of this study is to analyze how design reasoning influences the
quality of design. From the findings of the experiment, we have made a number of
observations on how the participants tackled the design.

38 A. Tang et al.

4.1 Discussions

Participants of both groups studied the requirements and the usability guidelines
before creating their design. Analyses have shown that the test group has produced
better quality UI designs than the control group in general. The following is a
summary of the differences between the test group and the control group:

Reasoning awareness. By stating the design rationale, the participants of the test
group have made explicit the reasoning underlying their designs. This imposed
justification process had made the participants more cognizant of whether their
decisions were correct. For instance, after spelling out that usability issues that
concerned them, they had to find ways to ensure that their design was reasonable in
dealing with the usability issue. As such, the test group was more aware of the usability
requirement in the design compared with the control group. This result could reflect on
the importance of reasoning of quality requirements in software architecture design.

Additionally, the reasoning approach induced the participants of the test group to
explicitly reason about their design in a structured manner. Therefore, they were
probably more careful in assessing their solutions in order to provide reasonable
justifications. This contrasts with the participants of the control group who mostly
used their intuition and knowledge to design. The control group’s objective was to
complete the design and satisfy the requirements without having to justify them.

Usability awareness. The participants of the test group identified usability as a key
issue to be addressed in the design, and they consistently revisited this issue in the
reasoning process. On the other hand, the participants of the control group considered
usability in the early part of the study and then they were less conscious about it
towards the end of a design session. It implies that an explicit design reasoning can
help make designers aware of quality requirements throughout the design process.

Initial design impression. We observed that participants from both the test and
control group formed initial impressions of a design solution initially. After exploring
the design issues and options, participants in the test group may shift from the initial
impressions of the design based on their design reasoning. On the other hand, the
initial design impression played a more dominant role in the control group, especially
with inexperienced designers, the initial design often became their final design. This
result indicates that the initial design impression can be dominant, but a reasoning
approach would help designers consider the design issues and options more carefully,
allowing the designers to move away from the dominant belief to a design that is
more appropriate.

Design backtracking. The participants of the test group backtracked their design and
reconsidered their previously made decisions much more often than those of the
control group. We suggest that it is because the test group was asked to explicitly
state their issues, options and design rationale, and such acts forced them to address
the issues that have been outlined, thereby achieving a level of systematic design
reasoning. The control group generally did not reconsider previously made decisions
as they built their design. Individual requirements were addressed but issues that arose
from the conflicting requirements were not identified.

 Design Reasoning Improves Software Design Quality 39

Level of satisfaction and design quality. The level of satisfaction and the level of
confidence between the test group and the control group were not significantly
different. This is despite that the test group had carried out the design process more
thoroughly and produced higher quality designs. We also did not observe differences
between the more experienced and less experienced designers. The results have
shown that the level of satisfaction and the level of confidence of a designer on
his/her design are not good indicators of the design quality.

Design time. There is no significant difference between the average time it takes for
the test group and the control group to complete their tasks. It implies that the effort
(in terms of time) spent by the test group is not significantly higher than that of the
control group. Thus, we have not found evidence to indicate that using reasoning in
design adds significant overhead to the design process.

Experience level and design quality. We have examined the design experience of
the two groups and have found them to be similar. However, as shown in Table 1, the
test group performed better on average than the control group. This is due to the
higher scores achieved by less experienced designers in the test group (see Fig. 2).

In the test group, the design outcomes of experienced (i.e. over 5 years) and
inexperienced (i.e. equal or less than 5 years) participants do not show much
difference. They both produced good quality design. The inexperienced participants
on average took longer to complete their design. In contrast to the test group, there is
an observable difference in design quality between the experienced and inexperienced
participants in the control group. Put differently, in the group of inexperienced
participants, those that used design rationale consistently performed better than those
that did not (see Fig. 2).

These results suggest that by using a design reasoning approach, less experienced
designers could benefit from it to achieve a better quality designs. All designers,
inexperienced and experienced, were briefed equally of the first principles of
usability. Design reasoning has helped inexperienced designers in the test group to
apply these principles successfully, and achieve what expert designers can do from
mere experience, but design reasoning has shown little difference between
experienced designers in the two groups. This suggests that experienced designers
have the intuitions and insights to look for the right issues and options, as
demonstrated by [7].

4.2 Limitations

This experimental study was based on a sample of twenty designers with industrial
experience. We used a convenient sampling method to find the participants, i.e. the
participants are the people whom we had access to and they were not randomly
selected. The sample size in this study is small, and so there are limitations on the
interpretations of the results.

The participants of the test group were explicitly required to state their design
issues, design options and reasoning. Such reminders may have directed them to think
more thoroughly, as such one could argue that the presence of the interviewers may
bias the results. However, the interviewers did not provide any design hints, and the
design decisions were deliberated entirely by the participants based on their knowledge

40 A. Tang et al.

and reasoning abilities. Hence, we argue that the test results from the experiments are
valid.

There are different experimental variables in such empirical studies that cannot be
strictly controlled, e.g. participants’ familiarity with the technologies involved. To
overcome this limitation, we analyzed qualitatively what the designers have done and
said about their designs to ensure that these variables do not affect the validity of the
results. As for the quantification of the scores, the limitation is the bias the researchers
may introduce. To overcome this, we have cross-checked all the designs to ensure that
there is a consistency scoring across all designs.

5 Conclusions

Recent research works have argued that the explicit representation of design
rationale is useful and can lead to better design outcomes. Yet there has been limited
research to examine design reasoning’s impact on design quality. Using usability as
a software architecture quality attribute, we have studied how design reasoning
influences the design quality, especially differentiating between experienced and
inexperienced designers.

We have used an empirical study to examine the design quality of two groups of
designers, one equipped with design reasoning and one without. The results of the
experiment have shown statistically that a design reasoning approach improves the
quality of design.

Designers who explicitly reason about their design decisions produce on average
better designs. Furthermore, design reasoning appears to help inexperienced designers
more than they do help experienced designers. The designers who do not use explicit
design reasoning produce diverse results, and some of the designs have low usability,
especially in the case of inexperienced designers. Therefore, we conclude that design
reasoning helps inexperienced designers to better apply first design principles and to
deliver a better design, by providing them with a deliberation framework and a mental
image of the ongoing design.

These findings have provided encouraging empirical results to support further
investigation into incorporating design reasoning in the software architecture
design process.

Acknowledgments. This work is supported in part by the Australian Collaborative
Research Centre for Advanced Automotive Technology and the Swinburne University
of Technology Visiting Professor Award Scheme 2008.

References

1. De Neys, W.: Implicit conflict detection during decision making. In: Proceedings of the
Annual Conference of the Cognitive Science Society, vol. 29, pp. 209–214 (2007)

2. Tang, A., Barbar, M.A., Gorton, I., Han, J.: A survey of architecture design rationale.
Journal of Systems and Software 79(12), 1792–1804 (2006)

 Design Reasoning Improves Software Design Quality 41

3. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C.,
Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidelberg
(2004)

4. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
Proceedings 5th IEEE/IFIP Working Conference on Software Architecture, pp. 109–120
(2005)

5. Bass, L., John, B.E.: Linking usability to software architecture patterns through general
scenarios. The Journal of Systems and Software 66(3), 187–197 (2003)

6. Golden, E., John, B.E., Bass, L.: The value of a usability-supporting architectural pattern
in software architecture design: a controlled experiment. In: Proceedings of the 27th
International Conference on Software Engineering (ICSE 2005), pp. 460–469 (2005)

7. Cross, N.: Creative Thinking by Expert Designers. The Journal of Design Research 4(3)
(2004)

8. Epstein, S.: Integration of the cognitive and the psychodynamic unconscious. American
Psychologists 49, 709–724 (1994)

9. Evans, J.S.: In two minds: dual-process accounts of reasoning. Trends in Cognitive
Sciences 7(10), 454–459 (2003)

10. Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based on
empirical results of interviews with software designers. Information and Software
Technology 49(6), 637–653 (2007)

11. Bratthall, L., Johansson, E., Regnell, B.: Is a Design Rationale Vital when Predicting
Change Impact? – A Controlled Experiment on Software Architecture Evolution. In:
Second International Conference on Product Focused Software Process Improvement, pp.
126–139 (2000)

12. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy
Sciences 4(2), 155–169 (1973)

13. Maclean, A., Young, R., Bellotti, V., Moran, T.: Questions, Options and Criteria: Elements
of Design Space Analysis. In: Moran, T., Carroll, J. (eds.) Design Rationale - Concepts,
Techniques, and Use, pp. 53–105. Lawrence Erlbaum, Mahwah (1996)

14. Lee, J., Lai, K.: What is Design Rationale? In: Moran, T., Carroll, J. (eds.) Design
Rationale - Concepts, Techniques, and Use, pp. 21–51. Lawrence Erlbaum, Mahwah
(1996)

15. Conklin, J., Begeman, M.: gIBIS: a hypertext tool for exploratory policy discussion. In:
Proceedings of the 1988 ACM conference on Computer-supported cooperative work, pp.
140–152 (1988)

16. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
SOFTWARE 22(2), 19–27 (2005)

17. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures: Views and Beyond. Addison-Wesley, Reading
(2002)

18. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design traceability and
reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

19. Ali-Babar, M., Gorton, I., Jeffery, D.R.: Capturing and Using Software Architecture
Knowledge for Architecture-Based Software Development. In: Proceedings of the Quality
Software International Conference (QSIC 2005), pp. 169–176 (2005)

20. Carroll, J.M., Rosson, M.B.: A case library for teaching usability engineering: Design
rationale, development, and classroom experience. Journal on Educational Resources in
Computing 5(1), 1–22 (2005)

42 A. Tang et al.

21. Mayhew, D.J.: The usability engineering lifecycle: a practioner’s handbook for user
interface design. Morgan Kaufmann Publishers, San Francisco (1999)

22. Howard, S.: Trade-off decision making in user interface design. Behaviour & Information
Technology 16(2), 98–109 (1997)

23. Norman, D.A.: Design principles for human-computer interfaces. In: Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, pp. 1–10. ACM Press, New
York (1983)

24. MacLean, A., Young, R.M., Moran, T.P.: Design rationale: the argument behind the
artifact. In: Proceedings of the SIGCHI conference on Human factors in Computing
Systems, pp. 247–252. ACM Press, New York (1989)

25. Erikson, T.D., Simon, H.A.: Protocol Analysis: Verbal Report as Data. The MIT Press,
Cambridge (1985)

26. Guan, Z., Lee, S., Cuddihy, E., Ramey, J.: The validity of the stimulated retrospective
think-aloud method as measured by eye tracking. In: Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, pp. 1253–1262 (2006)

27. Nielsen, J.: Ten Usability Heuristics. (2007),
 http://www.useit.com/papers/heuristic/heuristic_list.html

28. Walpole, R.E., Myers, R.H.: Probability and Statistics for Engineers and Scientists.
Macmillan Publishing Co., Inc, Basingstoke (1978)

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 43–54, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Tool to Visualize Architectural Design Decisions

Larix Lee and Philippe Kruchten

University of British Columbia
{llee,pbk}@ece.ubc.ca

Abstract. The software architecture community is shifting its attention to archi-
tectural design decisions as a key element of architectural knowledge. Although
there has been much work dealing with the representation of design decisions as
formal structures within architecture, there still remains a need to investigate
the exploratory nature of the design decisions themselves. We present in this
paper a tool that should help improve the quality of software architecture by
enabling design decision exploration and analysis through decision visualiza-
tion. Unlike many other design decision tools which acquire, list, and perform
queries on decisions, our tool provides visualization components to help with
decision exploration and analysis. Our tool has four main aspects: 1) the deci-
sion and relationship lists; 2) decision structure visualization view; 3) decision
chronology view; and 4) decision impact view. Together, these four aspects
provide an effective and powerful means for decision exploration and analysis.

1 Introduction

Software design is derived from making many decisions; capturing the most signifi-
cant of these decisions would help convey significant insight and rationale behind the
different aspects or features of the system architecture and design. However, the ar-
chitectural knowledge provided by a simple enumeration of design decisions is often
dry and difficult to peruse. If decisions can be browsed or visualized in an effective
manner, the amount of time spent on communicating the software design with others
can be reduced.

Defining software architecture to be a set of important design decisions [16] sug-
gests that we need to effectively capture, browse, and exploit such design decisions.
We addressed improving decision capture in an earlier paper [22], but for decision pe-
rusal and analysis, we propose that visualizing design decisions using different per-
spectives may improve the quality of decision information conveyed to the software
architect, designer, or developer, which results in making better system architecture.

We have built a tool that assists the architects in decision exploration and analysis
by employing different aspects to visualize a set of design decisions. This paper de-
scribes our tool and its various components as well as discusses how the tool contrib-
utes to architectural design decision exploration.

The paper is structured as follows: Section 2 provides some background into the
scope of our research. Section 3 describes the previous work in visualizing and ex-
ploring software architectural design decisions, while section 4 describes our tool in
detail. Sections 5 and 6 describe our experiences and our future work with the tool.

44 L. Lee and P. Kruchten

2 Background

During the software design process, we make many kinds of decisions. Some deci-
sions can be traced directly to some element in the design or in the code. Other deci-
sions are more difficult to track down to any concrete artifact as they span over many
different elements or specify certain properties of the design/system. There are also
decisions related to business/organizational issues. People frequently change their
minds on decisions and the shift to agile software development methods imply that
decision changes will be more common in occurrence. A single decision change could
significantly affect the entire architecture of the software system being developed,
implying the need to clearly document and model the role of design decisions and
knowledge into software architecture.

2.1 Design Decisions and Software Architecture

What differentiates architectural design decisions from other design decisions is that
the former are decisions that cross-cut multiple components and connectors and inter-
twine with other design decisions [14]. If one of the architectural decisions is changed,
then the components dependent upon the changed decision would be impacted; fur-
thermore, the change may affect other decisions that are intertwined with or related to
the changed decision. Representing decisions as explicit, formal decision entities
within architecture and their descriptions may assist in determining the severity and
scope of a change. Decision entities make interdependencies more apparent and helps
identify the set of decisions and architectural components that cause design rule or
constraint violations.

The current shift is towards making design decisions and assumptions explicit
within architectural descriptions [11, 14, 17]. Since these decisions intertwine and
cross-cut architectural components, a decision view into software architecture [11] is
fitting and we can model software architecture involving the use of formal decision
entities. Software architectural models that use explicit decisions or assumptions in-
clude Lago and van Vliet’s assumptions meta-model [19], the Archium metamodel
[14], the ADDSS metamodel [9], and the architectural decision ontology described by
Ackerman and Tyree [2].

2.2 Design Decision Representation

Many architectural models identified that the decision itself should have a model of
its own to represent the architectural knowledge it carries. There are two main streams
in the capture and representation of architectural knowledge as design decisions. The
first stream is to use an argumentative approach via design rationale and the second
stream is to use structured decision entities.

2.2.1 Design Rationale
Design rationale documents the analysis history of why particular artifacts or features
are chosen [21]. They can also refer to non-functional requirements and constraints
imposed on the general nature of the system. Design rationale commonly employs the
use of an argumentation structure, which improves the capturing process as the

 A Tool to Visualize Architectural Design Decisions 45

knowledge can be expressed in familiar forms such as issues, alternatives, questions,
and options [12]. In essence, they take the perspective that decisions are context de-
pendent, so the context and background must be captured in detail. Although the deci-
sions can be captured using comfortable and relatable structures, it is difficult to ex-
tract the architectural decisions from the rationale as the decisions are embedded
within the justification texts of the design rationale. The more expressive form of us-
ing design rationale makes decision referencing more difficult.

2.2.2 Explicit Decisions
The second stream is representing design decisions explicitly, viewing the choice as
primary and the context and justification secondary to that decision. Although re-
search in the design rationale community has dealt with representing decisions and
assumptions explicitly, such as SIBYL [20], the software architecture community de-
veloped this area significantly due to the software architectural shift towards making
design decisions and assumptions explicit. We introduced an approach that makes de-
cisions first-class citizens by representing decisions using a decision ontology model
[17]. Jansen and Bosch’s architectural model [14] as well as Lago and van Vliet’s
work [19] also makes contributions to what is considered part of the decision model.

Though there are multiple approaches in representing design decisions and other ar-
chitectural knowledge, the definitions are starting to converge. An attempt to define
relevant architectural knowledge [8] by generalizing the principles of what would con-
stitute architectural knowledge brings together other definitions of architectural knowl-
edge, such as our decision ontology model [17], Bosch’s four decision aspects [5], and
Tyree and Ackerman’s decision description template [24]. A recent literature survey by
de Boer and Farenhorst [10] collected and synthesized definitions of architectural
knowledge to conclude that all authors considered design decisions to be a significant
part of the knowledge, and more definitions will come as the concept matures.

3 Decision Exploration and Visualization Tools

The formalized structure of explicit design decision representation in software archi-
tecture offers high decision analysis and exploitation potential. However, the analyti-
cal and exploitative capabilities of architectural design decision representation are
bound by the way the information is organized or rendered. If the decisions are not ef-
fectively conveyed to the software architects, designers, and developers, then we
question the usefulness of capturing those decisions; consequently, architectural de-
sign decision tools implementing explicit decision representation would need to ade-
quately support decision exploration.

Design decision visualization facilitates understanding of the architecture and al-
lows a kind of “walkthrough” of the designers’ intents. Visualization is one of the five
requirements listed in the decision view of software architecture [11]. These require-
ments are: multi-perspective support, visual representation, complexity control (in
terms of scalability and navigation), groupware support, and gradual formalization of
design decisions. The five requirements were described later to apply to all tools that
utilize or manage design decisions [9].

46 L. Lee and P. Kruchten

3.1 Current Design Decision Tool Support

The recent interest in design decisions stimulated the development of several deci-
sion-based architectural tools. There are a number of tools created recently for the
exploration and analysis of design decisions; some are from the design rationale com-
munity, some are from the architecture community. We will briefly look at a few of
these tools in the context of decision visualization and exploration.

Although it is a design rationale tool, the SEURAT tool is an Eclipse development
environment plug-in utility that captures and utilizes design rationale by linking its
software code [7]. Decisions are visualized as part of the rationale in hierarchical ta-
bles displayed in Eclipse “views”. Since the goal of SEURAT is to assist in software
maintenance, the application to software architecture is not explicitly made. Another
rationale-based tool, Sysiphus, is a toolset that assists in the capture of various system
models for system development activities [6]. It supports rationale-based design deci-
sions and links them with system models. However, with the focus being on collabo-
ration support and on multiple system models, decision relationships and states are
not investigated in detail.

The Archium tool is an architectural design decision tool which primarily focuses
on how design decisions can be traced to the requirements and to the architectural
components of a software architecture [15]. Although the tool’s decision visualization
component uses a graphical view of decision relationships, Archium regards design
decisions as a “change function” with a single parameter [14], and the visualization of
the decision entities themselves are light. Decisions are visualized with a dependency
graph and the properties of the decision are listed in a table of attributes. Each deci-
sion can be linked to a graphical presentation of the architectural model, showing the
components and connectors that relate to the design decision.

The ADDSS tool is a web-based tool to capture and document architectural design
decisions for immediate browsing [9]. The tool lists the system requirements, the de-
cisions and the requirements it addresses, and user-uploaded picture files representing
the architectural products in a table format. Currently, the uploaded picture files from
ADDSS approach graphical representation of architecture; however, another version
is being developed to address the requirements stated in their follow-up paper [8].
Another web-based design decision tool, known as PAKME, focuses on general ar-
chitectural knowledge capture and management of scenarios, patterns, design options,
and decisions for the software architecture process [3, 4]. All these components, in-
cluding decisions and their relationships, are displayed in tables and are retrieved by
query-based mechanisms.

Although not officially designed to be tool-based work, there was a case study that
focuses specifically on the ontological visualization of design decisions [18]. Design
decisions followed the decision ontology model [17] and applied a visualization
framework that visually clusters decision entities together depending on the query.
The case study revealed that many architectural knowledge use cases can be sup-
ported by the clustering tool, but further tool extension is needed to explore the ideas
of inter-decision relationships and the amount of information that relationship analy-
sis can provide.

IBM research has also developed a tool, called the Architect’s Workbench, which
acknowledges the importance of decisions, but like many other tools, it has no

 A Tool to Visualize Architectural Design Decisions 47

obvious ways to visualize webs of decisions [1]. There are other successful knowledge
visualization tools that document decisions such as the Compendium tool [23], which
documents and visualizes the flow of knowledge and design rationale during interac-
tive team meetings. However, these tools are of a general scope and do not apply well
to the interrelated, dynamic nature of software architectural design decisions and the
multiple perspectives these decisions can have.

In many of the tool examples above, decision visualization would enable the atten-
tion to be directed towards specific areas of interest where useful conclusions may be
drawn; yet, the majority of the tools did not significantly investigate the concept of
decision visualization as a separate decision representation view or component. Visu-
alizing the decisions using different perspectives may improve the quality of the soft-
ware design by helping software architects, designers, and developers understand the
nature and impact the design decisions they made.

4 Tool Implementation

We implemented a tool that visualizes software architectural design decisions sepa-
rately from the software architecture in which they are referenced. The purpose of this
tool is to facilitate both decision browsing and detailed decision analysis.

Although there are various models to represent software architectural design deci-
sions, we excluded rationale-based decision models since those models detract atten-
tion away from the core decisions. We are primarily interested in how architectural
design decisions can be exploited, so a simpler, broader model that addresses software
design decisions in general is preferred. Decision models that architects and designers
can use more easily during software development are ideal. We decided to adopt
Kruchten’s decision model [17] because the model is simpler, more process-focused,
and it is the only model that explicitly represents decision relationships.

The tool captures design decisions and stores them into a file or a database for later
retrieval. Moreover, the decisions can be imported or exported using XML across
multiple computer workstations to ease decision capture and distribution. The user
can create, modify, remove both decisions and their interrelationships, and visualize
the decisions in several ways to support decision perusal and analysis. The tool util-
izes the Prefuse visualization framework [13] for the visual representation of design
decisions. The tool has four main views for decision visualization and information
display. The first is a simple tabular list of decisions and their relationships, while an-
other view visualizes the decisions using decision-graphs to display the decision
structures and relationships. The tool can also visualize the decisions in a chronologi-
cal order. The fourth view displays decisions from an impact perspective.

4.1 Decision / Relationship List

This view, a decision table, is the most common in the decision tools, and almost
every tool mentioned in Sect. 3 supports this view. The decision / relationship list
simply lists the design decisions in a table, showing a selection or all the attributes of
a design decision. Decision relationships are also listed in another table that refer-
ences the decision list. A screenshot is depicted in Fig. 1. The purpose of this view is

48 L. Lee and P. Kruchten

Fig. 1. Decision and relationship lists showing the current set of design decisions and their rela-
tionships: the user can create, view, modify, or remove design decisions directly from the tool.
In this figure, the “relationships…” button has been pressed, bringing up the relationships dia-
log that is currently displayed in the foreground. The decision epitome has been intentionally
concealed to protect the intellectual property of the organization that provided the dataset.

to supply a quick and effective way to browse and retrieve information from design
decisions. The textual representation of the decisions facilitates decision querying and
simple decision entry. However, it is difficult to trace decision relationships and
quickly assess decision properties when the decision set gets large.

4.2 Decision Structure Visualization

With large decision sets, an effective way to sort and analyze decision information is
to represent the decisions graphically. In this view, we visualize decision structure as
graphs, in which decisions are represented as nodes and the relationships are the
edges. Figure 2 depicts a decision graph that represents the decisions and their rela-
tionships. Decisions and relationships can be created, selected, viewed, modified, and
removed from this view. The advantages of graph visualization are apparent, such that
an observer can see relationships and their associated decisions more quickly than
from a list.

Besides the view’s graphical visualization, there is a high degree of interactivity
to communicate information. Using a force-directed layout for the visualization of
the decision graph, the tool represents decisions of a less mature state as being
physically lighter in the layout model and visually smaller than more mature deci-
sions. Decision maturity refers to the decision states in Kruchten’s decision ontology
model, where a decision can be an idea, tentative, decided, approved, challenged,

 A Tool to Visualize Architectural Design Decisions 49

Fig. 2. The visualization of design decisions and their relationships as a directed graph: the
nodes represent the decisions and the directed edges represent the decision relationship to an-
other decision. The node-size depends on the state of the decisions. Not shown in this figure are
the semantic zooming properties that can list decision properties like the decision’s epitome,
and the interactivity provided visualization where decisions at less mature decision states can
be moved around the visualization more easily than other decisions.

rejected, or obsolete. Visually, the maturity of a design can be assessed from the
number of small or large nodes in the graph. However, when the user interacts with a
decision node or a cluster of nodes, the user can quickly assess the maturity from
how quickly the decision can be moved around the screen. For example, more ma-
ture decisions are heavier and more difficult to move, so the decisions behave like
heavy objects.

Depending on the zoom level, the decision nodes can show more or less informa-
tion about the decision. When a user zooms towards a decision, the decision’s proper-
ties will appear inside the node. When a user zooms away, decision information gets
hidden. Viewing the decision or relationship details can also be performed without
zooming simply by selecting a decision.

4.3 Decision Chronology Visualization

The tool supports a time-based view of design decisions, the decision chronology, to
show the evolution of design decisions and provide the ability to quickly determine
created or changed decisions during a specified time interval. This view is shown in
Fig. 3. A user can select a subset of these decisions to view more closely, such as the
decisions within a cluster, and can create, view, or modify decisions. This feature is
especially valuable when there are periodic reviews of the architecture: it saves time
and effort for the reviewers who are already familiar with the system, who may only
want to know, “What has changed since last time?”

50 L. Lee and P. Kruchten

Fig. 3. The chronological view of a set of design decisions: this example shows three decision
creation or activity sessions over a two-week interval. The state of the decisions is denoted by
the shape: Diamonds are idea, circles are tentative; and squares are decided.

This view initially displays all the decisions created and modified during the pro-
ject in a timeline, with the date on the x-axis and a user-selectable field for the y-axis.
Decisions that are closely spaced denote a decision capture or activity session. A user
can quickly identify the state of a decision by its shape in the view.

A particular area of interest is in the user-selectable y-axis. The tool currently al-
lows categorization of the y-axis by decision ID or decision author. If the decision ID
is used for the y-axis, one can view decision changes in a global perspective (as the
decision ID is implemented as an increasing number). If the author is used for the y-
axis, we can determine which decision-makers are most active and which changes
they have made. Categorizing by author include the ability to find both subversive
and critical stakeholders who can potentially damage the system if they change their
minds [18]. With other category types for the user-selectable y-axis, the tool can be a
powerful way to exploit hidden knowledge within design decisions.

4.4 Decision Impact Visualization

The fourth view of design decisions that this tool supports is the decision impact.
Shown in Fig. 4, this view provides a visualization of decisions that can be potentially
impacted by a change of a decision. This view is very valuable when radical changes
are about to be made to a system, and the impact of certain changes may not be obvi-
ous in the architectural design or the code. Although the decision structure visualiza-
tion supports visualization of decision relationships, there are related decisions that
are associated by attributes, such as author, scope, and categories. The tool provides
an entry-point into the large matrix of potential impact-relationships by visualizing it.

The decisions are laid out using a radial layout, where all other decisions surround
the selected center decision. Selecting a different decision brings that decision into the
center and all other decisions surround it. Resting a mouse cursor on a decision would

 A Tool to Visualize Architectural Design Decisions 51

Fig. 4. The decision impact view of design decisions: the nodes represent design decisions
while the colored lines represent the impact-relationships between them. Thick edges are the
decision relationships in our decision ontology model [17], thin edges are impact-relationships.

highlight neighboring decisions associated with an impact-relationship. The impact
relationships can be filtered according to different criteria, such as category, scope, or
relationship. Currently, the tool links decisions that share a common criteria value
with an impact-relationship, though the tool can be modified to support different crite-
ria values, ranges, and thresholds.

5 Experience with the Tool

We were able to use industry datasets to test the practicality of the decision visualiza-
tion aspects. We demonstrated and used the tool with industry participants and ob-
tained feedback on the feasibility of the visualization tool.

One group of industry participants is from a large technology corporation that is
both process and documentation heavy. The participants are involved in a multi-
national project to develop an elaborate spatial modeling system, but the system is
constrained by many domain-specific guidelines and procedures. As the project is
very large, we reduced the scope and focused the decision capturing on the deploy-
ment configurations and the data model used for this system.

After demonstrating the tool to the participants using their own decision dataset,
we asked the participants what their initial impressions are. They found that the deci-
sion and relationship lists were acceptable, but for the graphical decision structure
visualization, the participants stated that the decision identifier used in the default
zoom-level is not fully intuitive, as it can be hard to mentally map decisions details to
the decision identifiers. The participants mentioned that the decision-relationship

52 L. Lee and P. Kruchten

graphs are informative, but they reported that the explicit decision relationships are
difficult to elicit and categorize, partly due to the various relationship definitions and
the tacit nature of defining these relationships. The participants appreciate the ability
to see decision sessions in the decision chronology view, and they found the “author”
criterion for the user-selectable y-axis to be an interesting application. Although the
participants felt that implementing a fine-grained filtering mechanism would improve
usability, all the participants agree that the decision impact view can be effective in
identifying potential, indirectly-impacted decisions.

From the initial feedback, we were able to validate the feasibility of the visualiza-
tion tool with industry datasets in a laboratory setting. However, we would like to
validate the tool in industry, allowing software designers, architects, and developers
to use the tool firsthand and investigate the exploratory and analytical capabilities of
the visualization tool.

6 Future Work

The four aspects that the visualization tool supports provide the user with a powerful
means to explore and analyze decisions with. This user can be a software architect, a
designer, a developer, or any other individual who would like to learn and explore the
decisions for a project. We are continuing to develop the tool further, improving the
user interface and providing more useful features to support the exploration and
analysis of decisions. Full query-support is a feature we would like to implement. An-
other useful feature is to link decisions across the four different views. Selecting a de-
cision in one view should select the same decision in another view. This way, the user
can maintain continuity between views and may discover new associations about the
design decisions. We would also like to implement fine-grained impact querying as
suggested by the participants, after which we could implement multi-level impact
visualization to improve usability.

Although we have identified four aspects, there may be other visualization tech-
niques that can reveal more information provided by the set of decisions. Ontological
visualizations [18] can be added to assist in decision retrieval and categorization,
while support for visualizing software and organizational artifacts may provide in-
sight by associating decision capture with the software development process. Fur-
thermore, visualizing the links between artifacts and design decisions may improve
traceability between requirements, architecture, and developed software code.

7 Conclusion

The tool we presented here has been developed and used with industry datasets from
several software organizations. The screenshots displayed in the preceding figures
demonstrated early results on the feasibility of the visualization tool as applied to in-
dustry, but further evaluation is needed to identify additional use cases in which the
visualization tool may be useful for industry practice. The decision sets acquired from
industry show some encouraging early results, but further detailed case studies with
industry participants may be necessary to apply other visualization techniques to bet-
ter capture, represent, and relay software architectural knowledge.

 A Tool to Visualize Architectural Design Decisions 53

References

1. Abrams, S., et al.: Architectural thinking and modeling with the Architects’ Workbench.
IBM Systems Journal 45(3), 481–500 (2006)

2. Akerman, A., Tyree, J.: Using ontology to support development of software architectures.
IBM Systems Journal 45(4), 813–825 (2006)

3. Babar, M.A., Gorton, I., Jeffery, R.: Capturing and Using Software Architecture Knowl-
edge for Architecture-based Software Development. In: 5th International Conference on
Quality Software (QSIC), Melbourne (2005)

4. Babar, M.A., Gorton, I., Kitchenham, B.: A framework for supporting architecture knowl-
edge. In: Dutoit, A.H., et al. (eds.) Rationale Management in Software Engineering, pp.
237–254. Springer, Heidelberg (2006)

5. Bosch, J.: Software Architecture: The Next Step. In: Oquendo, F., Warboys, B.C., Morri-
son, R. (eds.) EWSA 2004. LNCS, vol. 3047, Springer, Heidelberg (2004)

6. Bruegge, B., Dutoit, A.H., Wolf, T.: Sysiphus: Enabling Informal Collaboration in Global
Software Development. In: First International Conference on Global Software Engineer-
ing, Costao do Santinho, Florianopolis, Brazil (2006)

7. Burge, J.E., Brown, D.C.: Rationale-based Support for Software Maintenance. In: Dutoit,
A.H., et al. (eds.) Rationale Management in Software Engineering, pp. 273–296. Springer,
Heidelberg (2006)

8. Capilla, R., Nava, F., Duenas, J.C.: Modeling and Documenting the Evolution of Architec-
tural Design Decisions. In: Proceedings of the Second Workshop on SHAring and Reusing
architectural Knowledge Architecture, Rationale, and Design Intent, IEEE Computer Soci-
ety, Los Alamitos (2007)

9. Capilla, R., et al.: A web-based tool for managing architectural design decisions.
SIGSOFT Software Engineering Notes 31(5) (2006)

10. de Boer, R.C., Farenhorst, R.: In Search of ‘Architectural Knowledge’. In: Third Work-
shop on SHAring and Reusing architectural Knowledge Architecture, Rationale, and De-
sign Intent, IEEE Computer Society, Germany (2008)

11. Duenas, J.C., Capilla, R.: The Decision View of Software Architecture. In: 2nd European
Workshop on Software Architecture, Morison, Italy (2005)

12. Dutoit, A.H., et al.: Rationale Management in Software Engineering: Concepts and Tech-
niques. In: Dutoit, A.H., et al. (eds.) Rationale Management in Software Engineering, pp.
1–48. Springer, Heidelberg (2006)

13. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualiza-
tion. In: SIGCHI conference on Human factors in computing systems (2005)

14. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
Working IEEE/IFIP Conference on Software Architecture (WICSA) (2005)

15. Jansen, A., et al.: Tool support for architectural decisions. In: Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2007), Mumbai (2007)

16. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley,
Boston (2003)

17. Kruchten, P.: An Ontology of Architectural Design Decisions. In: 2nd Groningen Work-
shop on Software Variability Management, Rijksuniversiteit Groningen, NL (2004)

18. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 43–58. Springer, Heidelberg (2006)

19. Lago, P., van Vliet, H.: Explicit Assumptions Enrich Architectural Models. In: Interna-
tional Conference on Software Engineering (ICSE 2005), ACM Press, USA (2005)

54 L. Lee and P. Kruchten

20. Lee, J.: SIBYL: a tool for managing group design rationale. In: ACM conference on Com-
puter-supported cooperative work (CSC1990), Los Angeles (1990)

21. Lee, J., Lai, K.-Y.: What’s in Design Rationale? In: Design Rationale: Concepts, Tech-
niques, and Use, pp. 21–51. Lawrence Erlbaum Associates, Inc, Mahwah (1996)

22. Lee, L., Kruchten, P.: Customizing the Capture of Software Architectural Design Deci-
sions. In: 21st Canadian Conference on Electrical and Computer Engineering, IEEE, Los
Alamitos (2008)

23. Selvin, A., et al.: Compendium: Making Meetings into Knowledge Events. In: Knowledge
Technologies, Austin, TX (2001)

24. Tyree, J., Ackerman, A.: Architecture Decisions: Demystifying Architecture. IEEE Soft-
ware 22(2), 19–27 (2005)

Style-Based Model Transformation

for Early Extrafunctional Analysis
of Distributed Systems

Julien Mallet and Siegfried Rouvrais

Institut TELECOM; TELECOM Bretagne
Technopole Brest-Iroise, CS 83818, 29238 Brest Cedex 3, France
{julien.mallet,siegfried.rouvrais}@telecom-bretagne.eu

Abstract. In distributed environments, client-server, publish-subscribe,
and peer-to-peer architecture styles are largely employed. However, style
selection often remains implicit, relying on the designer’s know-how re-
garding requirements. In this paper, we propose a framework to explic-
itly specify distributed architectural styles, as independent models of
the application functionalities. To justify feasibility and further benefits
of our approach, we formally define three classical distributed architec-
tural styles in a process calculus. Our proposal then opens up the way
to a systematic composition of functional models with architectural style
models as an endogenous transformation. Comparative analysis of extra-
functional properties could then be proposed at the early design stages
to guide the architect in stylistic choices.

1 Introduction

Architectural styles build up conventional structures for designing large systems
at a software architecture level. Different architectural styles enforce different
quality attributes for a system [1]. Within distributed systems, an application
often relies on an architectural style which defines connections between applica-
tion components (e.g. simple message interaction models, client-server, publish-
subscribe, peer-to-peer). Most often, style selection remains implicit and tacit [2],
relying on the architect’s know-how regarding requirements. Choosing an inap-
propriate architectural style can lead to major impacts on the properties of a
system or application [3]. Moreover, extrafunctional properties such as security,
performance, reliability or scalability are not easily grasped at an abstract de-
scription level. Such concerns thus tend to be forwarded to the end of the design
process lifecycle, though they are rough to manage once a style has been selected
and a system designed. They are however the critical selection criteria to bet-
ter manage the development process, regarding system’s internal and external
properties.

Specifying a distributed system’s software architecture classically requires to
model architectural components and connectors, and some of their extrafunc-
tional properties. However connectors, as communication mediums, are parts

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 55–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 J. Mallet and S. Rouvrais

of distributed styles having their own comprehensive, intrinsic, and emergent
properties. To manage extrafunctional properties at early design stages, we pro-
pose to specify distributed architectural styles independently of the functional
model. By separating concerns in a framework, we then propose a model trans-
formation corresponding to a composition of an abstract functional model with
styles predefined in a repository. Functional and especially extrafunctional anal-
ysis could then be investigated to compare models and guide the architect faced
with several distributed design alternatives. To justify the approach, we restrict
to three common distributed styles descriptions in this paper, using structure
diagrams and process calculus: client-server [4], publish-subscribe [5] and peer-
to-peer [6]. A distributed version control system with its functional model is
proposed as a case study.

The remainder of this paper is organised as follows. Section 2 introduces
our framework and proposes some common distributed architectural styles and
their specifications using a process calculus. Section 3 presents an independent
functional model and proposes a specification example on the version control
system case study. The systematic composition of a functional model with an
architecture style model is described in section 4 through the application exam-
ple. Section 5 addresses extrafunctional properties integration in the framework,
while section 6 presents related work. Finally, section 7 concludes this paper
with a summary and an outline of further research.

2 A Framework with Distributed Architectural Styles

The motivation of the proposed framework presented in figure 1 is to guide
the architect in choosing the right distributed architecture style in conformance
with extrafunctional requirements. It follows a model driven engineering ap-
proach [7] and addresses the quality of the target system’s software architecture
for early design decisions. First, the designer specifies system functionality using

Extrafunctional

requirements

(style−based composition)

Early
analysis

Endogeneous Model Transformation

Analysis
Architecture model

(SDM)

(SSM)

Styles repository

(SIM)

Style−independant
functional model

Fig. 1. The overall framework

Style-Based Model Transformation for Early Extrafunctional Analysis 57

a style-independent model (SIM). This model is purely functional: the services
are provided in an ideal structureless-environment. However, application com-
ponents in a distributed system require some interaction mechanisms for co-
ordination and communication. As early proposed in the software architecture
community [8], architectural styles provide conventional structures for building
large systems [9,10]. Such structures are the primary models for distributed in-
teractions. Connectors, as interaction mechanisms, are the principal structural
elements for a boxology [3] of distributed architectural styles. Within distributed
systems, the client-server architectural style [4], based on the request-reply pro-
tocol, is still predominant. With Web generalisation, related styles like service-
oriented or Representational State Transfer (REST [11]) architectures are now
taking a major position. So far, mechanisms for coordination and communica-
tion based on push-like models (e.g. message sending) or pull-like models (e.g.
request-reply) are structural elements of architectural styles. Thus, we propose
to gather distributed architecture styles in a repository of style definition models
(SDM). Those models, having their own extrafunctional characteristics, can be
early analysed in light of extrafunctional requirements.

Extrafunctional properties (e.g. security, performance, scalability) are key el-
ements to guide the design decisions. Our transformation model consists in com-
posing the required functional services with a given distributed style available in
the repository. A distributed architectural style candidate can first be selected
in front of quality attributes. The resulting style specific model (SSM) repre-
sents a possible system’s architecture model which can be compared with other
SSMs using functional and extrafunctional analysis. The framework makes it
possible to choose, at upper stages, possible styles thanks to the extrafunctional
properties. After analysis, if a proposed style specific model does not guarantee
the extrafunctional requirements, the architect may modify or weaken some of
the requirements until finding an appropriate style, or introduce specific mech-
anisms (e.g. patterns) in the specified system’s software architecture to satisfy
requirements.

2.1 Three Classical Distributed Architecture Style Models

Client-server, publish-subscribe, and peer-to-peer styles are largely used for dis-
tributed applications. Such styles encourage reusability, system comprehension,
and analysis by using well-known interaction mechanisms. These mechanisms
predominantly rely on push or pull models. Style variants exist, but they share
common characteristics at an abstract level. In the classical client-server style,
a client component requests a service through a remote invocation to a server
component. Often synchronous, this interaction mechanism follows a pull model
based on a request-reply protocol. In the publish-subscribe style, components
are either announcers or listeners of events. By registering through an event
manager, listeners are asynchronously informed of events most often through a
push model. In the decentralised peer-to-peer style, where a peer represents a
component, overlays, as logical networks, are dynamically constructed or main-
tained. For instance, by using a pure pull model between peer neighbours or by

58 J. Mallet and S. Rouvrais

combining the pull with a push model restricted in depth, this style is much
adopted in mobile or ubiquitous environments.

The distributed architecture styles have emergent extrafunctional properties.
For example, the publish-subscribe and peer-to-peer styles are mostly known to
be scalable and reliable. Moreover, the publish-subscribe style generally guaran-
tees the anonymity of the announcers. However, these intrinsic properties mainly
arise from empirical studies and not from systematic evaluations on style models.

2.2 Modelling Architectural Styles

Magee and Kramer [12] provide elements of style specification using the Finite
State Processes (FSP) process calculus. For our purpose, we expand their style
examples to create a first repository of distributed styles, independent of any
application functionalities. Other formal approaches could have been addressed,
but FSP process calculus, with its associated LTSA tool (i.e. model-checker), is
suitable for a comprehensible demonstrator for a model transformation. For the
sake of clarity, the three classical distributed styles addressed in this paper are
shown hereafter as structure diagrams of processes (i.e. components as boxes
in figures) and ports or events (i.e. bullets in figures). Note that the structure
diagrams are only graphical representations of the FSP expressions as defined
in [12] (e.g. the notion of provided/required ports does not exist). Elements of
syntactical FSP expressions for client-server and publish-subscribe styles can be
found in [12]. We detail the FSP expression only for the client-server style.

Figure 2 presents the generic client-server style, through the structure dia-
gram, where several clients call services from the server and obtain the associ-
ated result. The clients are introduced by the processes CLIENT (stacked boxes
represent identical processes). A given client will always request the same service

call[s]

wait[d]

call[s]

reply[d]

request[s]

reply[d]

process_service[s][d]service[s][d]

CLIENT(s) SERVER

set Data = {d1,d2,d3,d4}
set ServiceId = {s1,s2}
set Clients ={c1,c2,c3}
CLIENT(S=’si)

= (call[S] −> wait[d:Data] −> service[S][d] −> CLIENT)+{call[ServiceId]}.
SERVER

= (request[s:ServiceId] −> process service[s][d:Data] −> reply[d] −> SERVER).
||CS EX

= (c1:CLIENT(’s1) || c2:CLIENT(’s2) || c3:CLIENT(’s1) || Clients:SERVER)
/{forall [c:Clients]{[c].call/[c].request,[c].reply/[c].wait}}.

Fig. 2. Structure diagram and FSP expression of a client-server style

Style-Based Model Transformation for Early Extrafunctional Analysis 59

(introduced by its parameter s). Furthermore, each CLIENT process is statically
linked with one distinct SERVER process that responds to its request (there are
as many SERVER as CLIENT processes). For model transformation, in order to
further compose the style-independent and style definition models, the clients
provide a service[s][d] event corresponding to an external call to the service s that
returns a result d, and the server offers a process service event corresponding to
an external service computation.

In addition, figure 2 presents the corresponding FSP expression and an ex-
ample of an instanced client-server style (process ||CS EX). Three sets are intro-
duced: Data as the possible results, ServiceId as the service names offered by the
server and Clients as the identifiers of the client processes. A CLIENT process
calls the service (event call[S]), then awaits synchronously the result (event wait),
forwards it through the service event to external components and iterates. Simi-
larly to [12], the CLIENT process uses the alphabet extension operator (noted +)
in order to ensure a suitable synchronisation between the clients and the server
and takes the service name as parameter (its default value is si). The SERVER
process awaits a service request (event request), then requests the result com-
putation (event process service) and returns the result (event reply). Finally, the
||CS EX client-server style example is the parallel composition of the clients (in
our case, three clients: c1, c2 and c3) with as many server processes prefixed
by the identifier of the corresponding client (expression Clients:SERVER). Cor-
responding to architectural attachments, the mapping between client and server
events associates, respectively, the call and wait events of the client with the
request and reply events of the corresponding server.

Note that the definition of the client-server style is generic : we just have to
define the Data, Client and ServiceId specific sets in order to instanciate the style
to a client-server application.

Relying on [12], figure 3 presents the publish-subscribe style where one
announcer (process ANNOUNCER) publishes events to zero or more listeners
(process LISTENER). The EVENTMANAGER process carries out the event broad-
casting. A listener can register his/her interest in a particular pattern p with the
event manager through the register[p] event. Each time the announcer produces
the pattern, only the registered listener is notified. Finally, a listener can dereg-
ister himself through the deregister event. In order to specify this style in FSP,
one event manager process is introduced per listener. When an event announce-
ment is produced, the event managers forward it to their associated registered
listeners.

register[p] register[p]

event[p]

deregister deregister

event[p]

announce[p]

EVENTMANAGER

announce[p]

ANNOUNCER

service[p] process_service[p]

LISTENER(p)

Fig. 3. Structure diagram of a publish-subscribe style

60 J. Mallet and S. Rouvrais

request[p][s]

reply[p][d]process_service[s][d]

service[s][d]

begin_flood[j][s]

end_flood[j][d]

end_flood[j][d]

call[i][s]

wait[i][d]

begin_flood[j][s]

PEER(i)

FLOODER(i,j)

Fig. 4. Structure diagram of a pure peer-to-peer style

Finally, figure 4 presents the peer-to-peer style in its flooding version where
peers collaborate through a pull model (e.g. like in the Gnutella scheme). Since
many variants of peer-to-peer styles exist, we limit our example to the simple
flooding version. Each peer is represented by a PEER process taking its number as
parameter. It offers two services as interface: service[s][d] for requesting a service
s returning the result d and process service[s][d] for requesting external compo-
nents. A FLOODER process per peer is associated with each link between peers.
In the figure 4, the peers of number i and j are neighbouring. The FLOODER
sends the requests to the peer neighbours (event call) then awaits the response
from the latter (event wait). Therefore, the topology of the considered peer-to-
peer network is modelled by the FLOODER and PEER links. At the time of a
service[s][d] event, the PEER process initiates the flood request to its neighbours
with the begin flood event. The FLOODER process carries out the flood, then ob-
tains the result d thanks to the wait[i][d] event. Finally, a PEER process receives
the result through the end flood event and transmits it to the requester.

The styles presented above and contained in the repository are distributed
architecture styles rather than communication ones in the sense that they de-
scribe interaction between components. Due to the style transformation (pre-
sented section 4), the intended interaction mechanisms will be introduced into
the functional model using the selected style model.

3 Functional Model

In the framework, the designer first specifies his system in a style-independent
model, with a pure functional point of view set in an ideal non-constrained envi-
ronment: extrafunctional properties are not taken into account, and architectural
stylistic elements are abstracted.

Thereafter, we exemplify this principle on a version control system as a clas-
sical distributed case study. A version control system (e.g. CVS) allows several
users/developers to modify a set of shared files concurrently. Each developer has
a copy of the files (most often in a repository) which he/she can modify locally,
using a write command. The local modifications are spread to other developers

Style-Based Model Transformation for Early Extrafunctional Analysis 61

with a commit command, using the versioning system. Update command brings
local copies up-to-date with the last shared version.

3.1 Pure Functional Model of a Versioning System

The style-independent functional model of a distributed application is defined
by introducing, for each user, the three following components (defined by one or
more processes as the application requires):

– User: operations from the user’s point of view (i.e. update, write, and com-
mit in the example). It introduces the available services thanks to shared
events;

– RemoteState: operations for data information obtained from other users
due to distribution (i.e. future components for interaction mechanisms);

– Safe: business rules specified through authorised sequences of events in the
system, to guarantee application requirements in functional terms.

Our abstract level approach is general and can be applied to other distributed
applications as long as they could be decomposed into the three previous com-
ponents. For our case study, each preceding component is specified by one FSP
process (i.e. User, RemoteState, Safe) as presented in the structure diagram of
figure 5. Each User process of the system takes a unique user number I as pa-
rameter. It holds and updates the state of its local copy of the repository (i.e.
either it is identical to the reference repository or it contains some update). Any
user can modify the file locally (event write), update his/her local copy with
the repository (event update) or update the repository with his/her local copy
(event commit). Moreover, the User process offers a service to read its local state
thanks to the localState event. In the structure diagram, the User(I) and User(J)
are similar except for their number. We distinguish them in order to present the
specific shared events between User and RemoteState processes.

localState[I][ls]

write[I]

update[I]

localState[I][ls]

Safe(I)

remoteState[I][rs]

commit[I]

write[I]

update[I]

remoteState[I][rs]

RemoteState(I)

update[I]

commit[J]

commit[I]

commit[J]

User(I)

User(J)

VC_FUNCTIONAL

Fig. 5. Functional structure diagram of a source control management system

62 J. Mallet and S. Rouvrais

The RemoteState(I) process abstracts the overall remote state for the ith User
process. The remote state is either remotely non modified (other users have not
modified the repository since the last local update) or remotely modified (one
or more other user has modified the repository). So, when another User(J) pro-
cess, distinct from User(I), performs a commit, the remote state associated with
I becomes remotely modified. When User(I) produces an update event, the re-
mote state becomes remotely non-modified. Furthermore, RemoteState provides
a service allowing its state to be read (event remoteState).

Finally, Safe(I) processes ensure the right update policy (i.e. each User(I)
process has to obtain a local copy that is consistent with the repository before
updating the repository with its changes). These processes define the functional
properties that the whole system has to ensure by specifying the authorised
sequences of events.

There are several implementations of versioning systems, introducing archi-
tectural styles more or less implicitly (e.g. CVS and Subversion rely on the
client-server style, SVK uses the peer-to-peer style). As we can see in our case
study, the functional model does not imply any style.

3.2 Facilitating Functional Model Generation

We propose to formally specify style-independent models at an abstract level
using a process calculus. A functional model is a composition of processes having
remote states definitions. However, specifying processes could be difficult for the
designer unfamiliar with formal methods. Tools supporting functional model
elaboration have been designed in the process calculus community. For instance,
based on scenarios specified as sequence diagrams or message sequence charts,
FSP expressions could be generated to assist the architect [13].

4 Functional and Style-Based Model Transformation

Once a functional model of the system has been specified by the designer, it
can be related to a certain architectural style model taken from the repository.
Thanks to process calculus specifications, the transformation is achieved by pro-
cess composition and event renaming. This model transformation is endogenous,
i.e. the source and target models are still FSP processes. The generic transfor-
mation process is based on the following steps:

1. Choice of an architectural style in the repository (note that the designer
could be egged on a choice due to early analysis on style models);

2. Selection of functional model event(s) in order to introduce the style;
3. Definition of event relabelling between functional model and style.

These above steps are devolved to the designer. Then, based on them, a sys-
tematic transformation can be applied in order to obtain the style specific model.
The target style specific model is simply a process parallel composition, where
events have been relabelled. We detail two generic transformations on our case

Style-Based Model Transformation for Early Extrafunctional Analysis 63

study, respectively to produce client-server and publish-subscribe style specific
models. The transformation will link the external events of a style (e.g. service
and process service for the client-server style) with shared events of the func-
tional model (e.g. commit, update and remoteState for the case study). These
later events can be seen as join points for the style introduction.

4.1 Two Style Specific Models of the Case Study

A Client-Server Versioning System. The client-server style is introduced
through the remoteState, update and commit events shared by the User, Safe
and RemoteState processes from the functional model detailed in section 3. The
events are transformed into a request-reply interaction between clients and a
server. The resulting structure diagram is given in figure 6. Three kinds of com-
ponents are identified: CS GEN, VC CLIENTS, and VC SERVER. CS GEN is the
client-server process described in section 2. VC CLIENTS represents the n clients
of the distributed versioning system, each one maintaining the state of the lo-
cal copy of a user and ensuring the access policy to the repository. Finally,
VC SERVER is the system server that holds and maintains the remote state of
each user.

Figure 7 presents the FSP expression (for simplicity, only the components
previously described are given). The processes from the functional model are
unchanged (i.e. User, Safe and RemoteSate). In this case, the system is com-
posed of three users identified by u0, u1 and u2. ServiceId is the set of events
used as join points in order to introduce the style. The ||CS GEN component
contains a CLIENT process per event and user. Thus, for the remoteState event,
there are three CLIENT processes, prefixed by u1.remoteState, u2.remoteState
and u3.remoteState respectively. The ||VC CLIENTS component is the parallel
composition of the User and Safe processes. Events are relabelled in order to

remoteState[I][rs]

RemoteState(I)

update[I]

commit[J]service[s][d] process_service[s][d]

localState[I][ls] localState[I][ls]

Safe(I)

User(I)

commit[I]

User(J)
commit[J]

remoteState[I][rs]

commit[I]

write[I] write[I]

update[I]update[I]

VC_CLIENTS

VC_SERVERCS_GEN

call[s]

reply[d]

request[s]

reply[d]

SERVER

call[s]

wait[d]

CLIENT(s)

Fig. 6. Structure diagram of the client-server specific model

64 J. Mallet and S. Rouvrais

set Users = {u0,u1,u2}
const NUser = #Users
range U =0..NUser−1
set ServiceId = {remoteState,update,commit}
||CS GEN

= (forall[c:Users](forall[s:ServiceId]([c].[s]:CLIENT(s)))
|| Users[s:ServiceId]:SERVER)

/{forall [c:Users]{forall [s:ServiceId]{
[c].[s].call/[c].[s].request,[c].[s].reply/[c].[s].wait}}}.

||VC CLIENTS
= forall[i:U](User(i)||Safe(i))

/{forall[j:U]{[@(Users,j)].remoteState.service[’remoteState]/remoteState[j],
[@(Users,j)].update.service[’update]/update[j],
[@(Users,j)].commit.service[’commit]/commit[j]}}.

||VC SERVER
= (forall[i:U](RemoteState(i)))

/{forall[j:U]{[@(Users,j)].remoteState.process service[’remoteState]/remoteState[j],
[@(Users,j)].update.process service[’update]/update[j],
[@(Users,j)].commit.process service[’commit]/commit[j]}}.

||VC CS =(VC CLIENTS || CS GEN || VC SERVER).

Fig. 7. Case study client-server FSP expression

match the style events. For instance, the remoteState[0] event of User(0) is re-
labelled u0.remoteState.service[’remoteState] (in FSP, the expression @(Users, j)
denotes the jth element of Users). The ||VC SERVER component composes the
RemoteState processes and relabels events equally. Finally, the ||VC CS final sys-
tem is the parallel composition of the three previous components.

A Publish-Subscribe Versioning System. For the publish-subscribe style,
we choose the commit event shared by the User and RemoteState processes in
order to introduce the style. This event is transformed into a push mode inter-
action: each User notifies all the others that he/she has modified the repository.
The resulting structure diagram is given in figure 8. Three kinds of compo-
nent are introduced: VC ANNOUNCERS, VC LISTENERS and PS GEN for the
style. The first one contains the User processes that act as announcers of com-
mit events. The VC LISTENERS component contains the RemoteState processes
acting as listeners of the same events. At commit time, the User(J) process an-
nounces the commit[J] event to the event manager, which broadcasts it to all
the RemoteState processes. The users communicate through the event manager
to notify repository updates.

We have shown throughout this example that a functional model could be
systematically composed with different styles provided in a common repository.
Nowadays, the transformations are handmade; we have not yet an automatic tool
that produces the target style specific model but we plan to describe formally
the style transformation as a FSP expression transformation. Indeed, the trans-
formation consists in composing the FSP expression of the functional model with

Style-Based Model Transformation for Early Extrafunctional Analysis 65

announce[p]

ANNOUNCER

service[p] register[p]

event[p]

deregister

announce[p]

EVENTMANAGER

register[p]

deregister

event[p]

process_service[p]

LISTENER(p)

localState[I][ls] localState[I][ls]

Safe(I)

User(I)

commit[I]

User(J)
commit[J]

remoteState[I][rs]

commit[I]

write[I] write[I]

update[I]update[I]

VC_ANNOUNCERS

PS_GEN

VC_LISTENERS

remoteState[I][rs]

RemoteState(I)

update[I]
commit[J]

Fig. 8. Structure diagram of the publish-subscribe specific model

the chosen style one and relabelling the events in order to match the functional
model ones with the external events of the style.

Further, style variants are also to be considered. In fact, RemoteState could
be distributed either locally on a User or within a particular component. A
range of style interaction models can then be made available according to the
required distribution. After composition, a model checker is the primary tool
used to verify conformity with functional requirements. A generated model can
be verified through a LTSA model checker (e.g. liveness, progress). For the ver-
sioning system example, we can check that the update policy is preserved after
the style introduction (i.e. there is no deadlock due to the SAFE processes). But
extrafunctional properties should be the key concerns for selection.

5 Preparing Architecture Quality Analysis

For the moment, our framework focuses mainly on the functional services and
properties of the system’s software architecture. However, extrafunctional prop-
erties are also to be taken into account in the style definition models and in
style-specific models so as to compare architectural choices. Some styles are in-
trinsically known to meet extrafunctional requirements more easily. In particular,
peer-to-peer distributed systems are well recognised for scalability and reliabil-
ity characteristics; publish-subscribe systems support extensibility, anonymity of
actors and dynamicity of incoming/outgoing participants; client-server systems
are often considered better for flexibility but worst for availability due to single
points of failure.

66 J. Mallet and S. Rouvrais

Using our approach, some security properties such as message authenticity,
confidentiality and integrity may be early verified, e.g. based on earlier formal
work of Schneider [14]. Pursuant to this proposition, the system is specified in
the CSP process calculus (quite similar to FSP) and includes an additional en-
emy process in order to model potential security attacks (e.g. message leakage,
message alteration). The security properties are then introduced as properties
on event traces. For example, for message confidentiality, it can be stated that
each message received by the enemy process must have been sent to it before.
This ensures that the message can only be accessed by the component which
was intended to receive it. Security analysis on a style model could then warn
anonymity weaknesses in face of strong security requirements. The designer could
then have a look at other styles or investigate the introduction of security mech-
anisms after model transformation. In order to preserve architecture quality af-
ter refinement by introducing such mechanisms, cross-cutting concerns between
extrafunctional properties need to be addressed. Extrafunctional properties in-
fluence each other [15] and can lead to conflicts in face of requirements (e.g. a
security mechanism impacts performance issues).

On the other hand, extensions to process algebras allow to introduce a timed
interpretation, i.e. to specify time performance properties as computing time
or message transfer time. These existing works seem a good starting point
to introduce extrafunctional properties into the framework. Their integration
and the extension to other properties (e.g. scalability, dependability) are under
investigation.

6 Related Work

An application can rely on several styles. As an early example, Garlan and
Shaw [8] have defined a collection of architectural styles showing how different
architectural solutions for a same problem offer different benefits. For exam-
ple, they outline four distinct architectural designs for the Key Word In Con-
text (KWIC) system (i.e. shared data, abstract data types, implicit invocation,
and pipes and filters). However, their early proposal does not open up the way
to a systematic transformation of functional models with different styles. In a
distributed system, selected interaction mechanisms impact locally on extra-
functional properties of a point-to-point interaction. But the choice of the right
architectural style also broadly depends on the emergent properties addressed
by the overall structure. To guide the selection, a formal specification of com-
mon distributed styles is a prerequisite for early analysis. Moreover, styles could
be combined [16] to meet specific requirements, encouraging analysis assistance.
Our proposal tends to go one step further in this direction.

In the last ten years, a number of architecture description languages have
been proposed to represent software architectures (e.g. [17,18,19]). More re-
cently, development and deployment of large distributed systems also conduce to
rely on component models with dedicated languages (e.g. CCM, Fractal, GCM).
Some of those architecture description languages open up the way to analysis by

Style-Based Model Transformation for Early Extrafunctional Analysis 67

incorporating formal specifications (e.g. CSP or pi-calculus, Z, OCL, types, graph
grammars or chemical abstract machine). However, their usage does not directly
dissociate styles from system models and therefore limits the definition of a fixed
repository of styles independent of the architect’s know-how.

To the best of our knowledge, three mature frameworks provide some architec-
ture stylistic guidance. Morisawa and Torii [20] have restricted their exploration
to the client-server style alternatives and propose to evaluate them under some
of the ISO 9126 quality issues (e.g. data security, reply to user for time perfor-
mance). Metrics with maximum range are fixed on properties. The target style
may be selected thanks to size and distance functions regarding requirement cri-
teria. It is worth noting that several extrafunctional characteristics are not taken
into account at the level of early design choices. By separating concerns, the ISO
42010:2007 recommended practice [21] now provides some elements within a con-
ceptual framework for describing and analysing complex architectures in terms
of architectural viewpoints. However, there is still a recognised gap between re-
quirements and architectural description phases.

The NFR framework [22] considers extrafunctional goals to guide the de-
signer and cover a far-reaching area of extrafunctional requirements. A nonfunc-
tional requirement is defined in a tree description as a combination of lower
level requirements (e.g. security is a combination of confidentiality, integrity and
availability) and pattern-mechanisms to meet them (e.g. confidentiality can be
ensured by using authentication and access matrix). Informal positive and neg-
ative contributions between mechanisms and requirements are elaborated by an
expert to guide the selection. Architectural patterns can also be attached to a
tree, based on property contributions known by experience. In this case, an ar-
chitecture guidance is a mechanisms and patterns proposal in conformance with
requirements.

After identifying actors and goals for a system, the i∗ framework [23] permits
to represent dependencies between components (e.g. tasks, resources) and then
elaborates alternative architectures. By selecting predefined architectural pat-
terns corresponding to quality attributes, refined solutions of an instance system
are then evaluated through metrics (actor-based and dependency-based). This
framework, used for system reengineering (i.e. SARiM and PRiM methods) un-
der quality issues, fruitfully distinguishes functional and extrafunctional aspects.
However, its pattern-based approach is flexible but less rigorous than a formal
transformation, and stylistic choices remain handmade at a pattern-level rather
than at a high structural one.

7 Conclusion and Perspective

Designing software architecture of good quality, satisfying requirements, is recog-
nised as a complex task. To facilitate construction in the lifecycle, well-known
architectural abstractions could be employed at the early design stages. How-
ever, a style choice could considerably impact extrafunctional properties in the
rest of the design cycle with sometimes large influences at the implementation
stages. Requirement specifications do not always impose or promote style models.

68 J. Mallet and S. Rouvrais

Depending on the functional and extrafunctional properties, an architect faced
with alternatives could rely on his/her know-how. Thus, alternatives scope and
criteria for style selection often remain implicit [2] and tend to be put forward
in the design process.

It is critical to better manage extrafunctional properties in the architecture
design as an engineering discipline. Architecture analysis at the early stages
is crucial to satisfy requirements in the final application or system and limits
tacit choices for the architect. By specifying the behaviour of an application
only in terms of functional concerns, independently of a style, our conjecture
prepares for the separation of distribution concerns. Indeed, some extrafunctional
properties [15] are intrinsic to specific styles [16] (e.g. reliability in client-server
or scalability in peer-to-peer).

Therefore, we have proposed in this paper a model-driven framework to shed
light on the appropriateness of separating functional system concerns from dis-
tributed architectural style. Relying on a process calculus, our formal design pro-
cess enables different architectural solutions to be systematically generated by
a transformation model. We tackled style independent and style specific models
at an abstract specification level, and have shown through a classical distributed
application that functional models could be expressed by a designer indepen-
dently of interaction mechanisms. Based on an expandable repository of styles,
a functional model of an application could be systematically composed with
alternative styles for further comparative analysis before development. The ap-
plicability of our approach has been justified, through three distributed styles,
with a classical distributed version control system case study. For the architect
faced with design alternatives, our framework thus provides early formal support
and allows to address the software architecture quality at higher design stages.

Following the NFR framework [22] proposal for quality attributes, future work
will take into consideration other extrafunctional properties for styles and anal-
yse their impact on the composition process. Is a property simply intrinsic or
not to a style? How to match the extrafunctional requirements with the re-
sults of analysis in our approach? Noting that resulting models are analysable
with respect to some extrafunctional properties, they could be extended with
patterns of mechanisms to meet requirements. Finally, a process calculus is not
ideally suited to all of the extrafunctional concerns. Further, it might restrict the
expandableness of the style repository (e.g. in order to address more dynamic
notions). Other formalisms could also be considered in our framework to meet
requirement specifications and to increase the expressiveness of style description.

References

1. Bhattacharya, S., Perry, D.E.: Predicting architectural styles from component spec-
ifications. In: Proceedings of the 5th Working IEEE/IFIP Conf. on Software Ar-
chitecture, pp. 231–232. IEEE Computer Society Press, Los Alamitos (2005)

2. Kruchten, P., Lago, P., van Vliet, H., Wolf, T.: Building up and exploiting architec-
tural knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006.
LNCS, vol. 4214. pp. 43–58. Springer, Heidelberg (2006)

Style-Based Model Transformation for Early Extrafunctional Analysis 69

3. Shaw, M.: Comparing architectural design styles. IEEE Software 12(6), 27–41
(1995)

4. Orfali, R., Harkey, D., Edwards, J.: The essential client/server survival guide. John
Wiley and Sons, Chichester (1996)

5. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

6. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys 36(4), 335–371 (2004)

7. OMG: Object Management Group (Lillerand, J., Mukerji, J. (eds.)) Model Driven
Architecture Guide, version 1.0.1 (June 2003),
http://www.omg.org/docs/omg/03-06-01.pdf

8. Garlan, D., Shaw, M.: An introduction to software architecture. Advances in Soft-
ware Engineering and Knowledge Engineering 2, 1–39 (1993)

9. Bushmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A system of patterns. John Wiley and Sons, Chich-
ester (1996)

10. Shaw, M., Clements, P.: Toward boxology: preliminary classification of architec-
tural styles. In: Proceedings of the second international software architecture work-
shop (ISAW-2) on SIGSOFT 1996 workshops, pp. 50–54. IEEE Computer Society
Press, Los Alamitos (1996)

11. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002)

12. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley
and Sons, Chichester (2006)

13. Uchitel, S., Chatley, R., Kramer, J., Magee, J.: LTSA-MSC: Tool support for be-
haviour model elaboration using implied scenarios. In: Garavel, H., Hatcliff, J.
(eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619. pp. 597–601. Springer,
Heidelberg (2003)

14. Schneider, S.: Security properties and CSP. In: Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pp. 174–187. IEEE Computer Society Press,
Los Alamitos (1996)

15. Chung, L., Nixon, B.A., Yu, E.: Using non-functional requirements to system-
atically select among alternatives in architectural design. In: First International
Workshop on Architectures for Software Systems (IWASS), pp. 31–43 (1995)

16. Mehta, N., Medvidovic, N.: Composing architectural styles from architectural
primitives. In: Proceedings of the 9th European Software Engineering Conference
(ESEC), pp. 347–350. ACM press, New York (2003)

17. Magee, J., Kramer, J.: Modelling distributed software architectures. In: First In-
ternational Workshop on Architectures for Software Systems (IWASS) (1995)

18. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

19. Zhang, S., Goddard, S.: xsadl: An architecture description language to specify
component-based systems. In: Proceedings of the IEEE Int. Conference on Infor-
mation Technology: Coding and Computing, pp. 443–448. IEEE Computer Society,
Los Alamitos (2005)

20. Morisawa, Y., Torii, K.: An architectural style of product lines for distributed
processing systems, and practical selection method. In: ESEC/FSE-9: Proceedings
of the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering, pp.
11–20. ACM, New York (2001)

http://www.omg.org/docs/omg/03-06-01.pdf

70 J. Mallet and S. Rouvrais

21. ISO: International Organization for Standardization: Systems and Software Engi-
neering – Recommended practice for architectural description of software-intensive
systems. ISO/IEC DIS 42010, 90.92 review stage (December 2007)

22. Chung, L., Gross, D., Yu, E.: Architectural design to meet stakeholder require-
ments. In: Donohue, P. (ed.) Software Architecture, First Working IFIP Confer-
ence on Software Architecture (WICSA1), Vienna, Austria, pp. 545–564. Kluwer
Academic Publishers, Dordrecht (1999)

23. Grau, G., Franch, X.: A goal-oriented approach for the generation and evaluation
of alternative architectures. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758.
pp. 139–155. Springer, Heidelberg (2007)

Carmen: Software Component Model Checker

Aleš Pľsek1 and Jǐŕı Adámek2,3

1 INRIA-Lille, Nord Europe, Project ADAM
USTL-LIFL CNRS UMR 8022, France

ales.plsek@inria.fr
2 Distributed Systems Research Group

Charles University in Prague
Czech Republic

adamek@dsrg.mff.cuni.cz
3 Institute of Computer Science,

Academy of Sciences of the Czech Republic

Abstract. The challenge of model checking of isolated software com-
ponents becomes more and more relevant with the boom of component-
oriented technologies [20]. An important issue here is how to verify an
open model representing an isolated software component (also referred
as the missing environment problem in [17]).

In this paper, we propose on-the-fly simulation of the component
environment to address the issue. We employ behavior protocols [18]
and a system coordinating two model checkers: Java PathFinder [4] and
BPChecker [15]. This approach allows us to enclose the model represent-
ing the behavior of a given component and consequently to exhaustively
verify the model. Our solution was implemented as the Carmen tool [1].

We demonstrate scalability of our approach on real-life examples and
show that, in comparison with the COMBAT model checker [17], we
bring better performance, and also exhaustive and correct verification.

1 Introduction

Model checking [9], as one of the most popular approaches to formal verifica-
tion of software systems, has already proven to be useful. However, the need
for extracting a finite model from a target system (the ”classical” model check-
ing) forces researchers to seek approaches on model checking at the source-code
level. Despite the complexities of these approaches, particularly the state ex-
plosion problem, there exist such model checkers (e.g. Java PathFinder [4] or
Bandera [10]). One of the methods of coping with the issue of state explosion is
decomposition of a system into small parts which can be verified separately.

Independently on this branch of research, widely popular Component-Oriented
Programming [20] introduces software components – small compact units provid-
ing a certain functionality through strictly defined points. It is therefore natural
to tackle the problem of software component verification, since components them-
selves bring the most straightforward way of decomposition – a property so inten-
sively sought when fighting the state explosion problem.

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 71–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 A. Pľsek and J. Adámek

In the scope of formal verification, we distinguish between closed and open
systems. A closed system is autonomous, i.e. it does not communicate with
another system. In the context of component programming, it is e.g. whole com-
ponent application — there are no interfaces for the communication of the whole
application with another component. On the other hand, an open system com-
municates with other entities; again, in the context of component programming,
it is e.g. a single component, that communicates with other components (its en-
vironment) via interfaces. A behavior model of a closed system is called a closed
model, while a behavior model of an open system is called an open model.

From the verification point of view, a behavior model specified by the code of
a single component (an open model) is incomplete, as the behavior of the com-
ponent depends not only on the decisions made by the component itself, but also
on its environment. In the context of different environments, the behavior of the
component can differ. However, the source-code level model checkers typically
need a closed model as the input. Therefore, an important question arises here:
How to enclose the model of a component and thus to allow formal verification?
The challenge is also referred as the missing environment problem [17].

The goal of our research is to propose an answer to the question above. In this
paper we design a method of on-the-fly simulation of software component’s envi-
ronment to achieve a closed model. In our solution, component’s implementation
and its behavior specification, given in a form of a behavior protocol [18], are pro-
cessed by two cooperating model checkers - Java PathFinder [4] and BPChecker
[15]. These cooperating tools then formally verify component’s implementation
against a behavior protocol and specified properties.

Our solution was implemented as the Carmen tool [1]. We compared Carmen
with COMBAT — the tool presented in [17], addressing the same issue. We
concluded that Carmen performs exhaustive verification, while COMBAT does
not. Also, the state space traversed by Carmen is smaller, which is important
for performance.

To reflect the goal, the structure of the paper is as follows. Section 2 intro-
duces basic insights into Java PathFinder, Component-Oriented Programming,
and Behavior Protocols. At the end of the section, we elaborate on the goal of
our research. While Section 3 presents possible approaches to the missing en-
vironment problem, Section 4 describes in detail the concept we have chosen
to implement. Section 5 demonstrates our contributions and scalability of the
solution on real-life examples. In Section 6 we discuss related work. Section 7
concludes the paper.

2 Background

2.1 Java PathFinder

Java PathFinder (JPF) [4,21] is an explicit state software model checker. It
verifies given program by traversing its state space and searching for implemen-
tation errors (e.g. deadlocks, unhandled exceptions,...) and property violations.
Moreover, user’s own properties can be defined. JPF operates at the program

Carmen: Software Component Model Checker 73

byte-code level which means that a real-life application written in Java is used
as a model of a system. A custom Java virtual machine (JPF VM) is used to
execute a given program in every possible execution path. The state space of a
target program is a directed acyclic graph in principle with branches determined
by Java bytecode instructions, thread interleavings, and possible values of in-
put data. JPF fights the state-space explosion problem by implementing POR
algorithm [9] and state matching heuristics [12].

2.2 Component-Oriented Programming

We employ the basic idea of Component-Oriented Programming [20] that is
further extended in the hierarchical component models, e.g. [3,5]. Here, compo-
nents are either composite (created as a composition of lower-level components)
or primitive (implemented directly in a common programming language, e.g.
Java). Components are viewed as black-box entities. Interfaces of components
can be either required or provided. Through provided interfaces, services of the
component are accessible, the required interfaces are connected to other compo-
nents to intermediate delegation of tasks. By the term environment we denote
all the components connected to the interfaces of a given component.

We implemented the Carmen tool, introduced in this paper, for the Fractal
component model [3]. As a future work, we also plan to adapt Carmen for the
SOFA component model [5]. We chose Fractal and SOFA because we had been
experienced with the formal verification of the applications written in those
component models and because checkers of behavior protocols had been already
implemented for both of them [6,15].

2.3 Behavior Protocols

Behavior protocols [18] are a language for component behavior specification.
They have been successfully applied to the SOFA [18] and Fractal [6,15] compo-
nent models. To analyze behavior of components specified via behavior protocols,
Behavior Protocol Checker (BPChecker) [15] was developed.

A behavior protocol describes communication of a component with its envi-
ronment. 1 On the semantic level, such a communication is defined as the set of
all admissible sequences of events on the component’s interfaces. There are two
kinds of events: requests for method calls and responses to those requests.

Syntactically, behavior protocols are similar to process algebra [7]. The basic
building blocks of a behavior protocol are event tokens, denoting the events. An
event token has the following syntax: <prefix><interface>.<method><suffix>.
The prefix ? denotes acceptance of an event, the prefix ! denotes emission of an
1 To be precise, a behavior protocol can describe not only the communication of a

component with its environment, but also the interplay of events inside a composite
component. However, this alternative usage of behavior protocols is out of scope of
this paper, as our goal is to check consistency of a primitive component code with
the protocol of the component; specification of a composite component behavior via
behavior protocols is not needed here. For more details, see [18].

74 A. Pľsek and J. Adámek

Fig. 1. Motivation Example: the LogDatabase composite component consisting of the
Database and Logger subcomponents. The small black and gray boxes denote provided
and required interfaces. E.g., db is a provided interface of Database, while lg is a
required interface of Database. The behavior protocol of Database is shown.

event. The suffix ↑ denotes a request (i.e. a method call), and the suffix ↓ denotes
a response (i.e. return from a method). Therefore, for i being an interface name
and m being a method name on i, ?i.m↑ stands for accepting the request for a
call of i.m, while !i.m↓ denotes the emission of the response for a call of i.m.

Behavior protocols are syntactically constructed from the event tokens using
operators. There are operators for sequencing (;), alternative behavior (+), repe-
tition (*), and arbitrary interleaving (|), that is useful for behavior specification
of parallel processes.

Also, abbreviations are defined for behavior protocols; they serve as syntac-
tic sugar, standing for complex but often used constructs. The abbreviation ?i.m
stands for ?i.m↑ ; !i.m↓, i.e. acceptance of a request followed by the emission
of the associated response (i.e. the typical part of the behavior of a component
providing i.m to the outside world). Similarly, !i.m stands for !i.m↑ ; ?i.m↓. Fi-
nally, if P is an arbitrary protocol, ?i.m{P} stands for ?i.m↑ ; P ; !i.m↓, i.e. it
describes a part of the behavior of a component providing i.m, where the protocol
P describes what the component does inside of the implementation of i.m.

NULL stands for an empty protocol (specifying no behavior).
We demonstrate the usage of behavior protocols on a simple example shown

in Fig. 1. Here, the functionality of the Database component is expressed by its
behavior protocol. First, Database accepts the initialization call — db.start;
this leads to calling lg.log and then the result of the db.start call is returned.
After that, Database is able to absorb an arbitrary number of db.get or db.put
calls, each resulting in an lg.log call. To finish the execution, the component
is stopped by calling db.stop.

2.4 Goal Revisited

Behavior protocols give to a component application developer the option to check
consistency of his or her design from the point of view of component behavior.
For example, if behavior protocols of all three components in Fig. 1 are provided
by the developer, it is possible to check correctness of communication between

Carmen: Software Component Model Checker 75

Database and Logger, as well as compliance of the LogDatabase internals behavior
(determined by the protocols of Database and Logger) with the LogDatabase
protocol itself [18]. However, once we take also primitive components into con-
sideration (i.e. the components that are not composed of subcomponents, but
directly implemented in some programing language instead — and there must
be such components in each application), things get more complicated.

Let as assume that Database is primitive (and is implemented in Java). Now,
we cannot assure the correctness of the Database implementation by pure behav-
ior protocol analysis, as there are no behavior protocols describing the behavior
of Database internals.

Moreover, we can look at the problem from another point of view: we want to
use verification tools for Java code. One of the options to specify the properties
to verify is to use assertions — conditions that must by true when the control
reaches given places in the code2. However, as the code of the component is
an open code (it has no predefined entry point and the behavior of the code
depends on how the environment will use it), it is not possible to use the code
verification tool to check the properties expressed as assertions. As mentioned
in the introduction, this issue is called missing environment problem [17].

Therefore, the goal of our work is the following: to design and implement
a tool that (1) checks the compliance of Java implementation of a primitive
component with the behavior protocol of the component (i.e. verifies that the
code does what the protocol specifies), and (2) at the same time it checks validity
of the assertions in the Java code; only those runs that correspond to the behavior
specified via the protocol are taken into consideration.

We chose Java as both the SOFA and Fractal component models (where the be-
havior protocols were already applied) use Java as the implementation language.

3 Cooperation of Model Checkers

The problem we tackle in this paper is a verification problem. To solve it, we
decided rather than developing a brand new tool to adapt an existing model
checker. From our study, the Java Path-Finder tool (JPF) emerged as the best
option. It provides wide functionality and can be easily modified and extended.

However, JPF itself does not allow to cope with all the issues of a single com-
ponent verification. Since JPF allows to verify only closed models, we introduce
behavior protocols to substitute the environment of the component and thus to
enclose the model. During the verification it is then necessary to observe the
communication of the component with the environment represented by behavior
protocols. To do this, we employ an additional model checking tool – BPChecker.
The specific details of such a checker cooperation form our main contribution.

The task of the cooperation is to synchronize the verification of the com-
ponent implementation, performed by JPF, and the verification of component
2 Contrary to the classic assertions used for software testing, assertions in formal

verification are much more powerful tool, as the verification tool checks the validity
of assertions for all possible runs.

76 A. Pľsek and J. Adámek

external behavior, performed by BPChecker, whenever a communication between
the component and its environment occurs. Such a synchronization can be
achieved using two different concepts discussed further: Virtual Environment
or Environment Simulation.

3.1 Virtual Environment Concept

The key idea of this concept, presented in Fig. 2 A), is to automatically generate
virtual environment of a component (i.e. a Java code), creating a closed system
that can be verified by JPF. Such a code has to provide an entry point (the
main method). Moreover, the virtual environment has to be able to perform
every sequence of events described in the component’s behavior protocol. This
guarantees that JPF will be able to analyze all the behavior alternatives that
are relevant.

While verification of such an enclosed model (code of the component + vir-
tual environment) is simple (this can be done with just a minor modification of
JPF [17]), generating a virtual environment from the protocol has many issues.
The reason is that some forms of behavior protocols (e.g. those specified using
the alternative and repetition operators) can not be equivalently expressed by
a Java code. Therefore, no virtual environment can correspond to such proto-
cols, and consequently the verification process cannot be correct. Despite its
disadvantages, this concept was implemented in the COMBAT model checking
tool [17].

3.2 Environment Simulation Concept

The idea of the Environment Simulation concept is to use JPF to analyze only
the code of the verified component itself and to handle the events on the external
interfaces of the component via a modification of JPF — see Fig. 2 B). Every
time the Manager detects communication initiated by the verified component,
it interrupts the verification process and let the Response Generator simulate
appropriate environment responses according to the behavior protocol of the ver-
ified component. The information about the appropriate environment responses

Fig. 2. JPF and BPChecker Cooperation, Proposed Concepts

Carmen: Software Component Model Checker 77

is taken from the Protocol Checker, that is run in a special mode. At the same
time, Call Generator is used to simulate the calls initiated by the environment.
Finally, the Protocol Checker is used not only to obtain the information about
the environment responses, but also to check that the events emitted by the
verified component respect the protocol.

The Environment Simulation concept allows to simulate any form of behavior
protocols, including the alternative and repetition operators, providing correct
and exhaustive form of verification. Moreover, as Manager can interrupt the
verification process at any time and force JPF to explore another execution
path, it is possible to control verification and to smoothly integrate additional
heuristics.

In the light of the outlined options, the Environment Simulation concept was
chosen to implement. Based on this decision, the Carmen project [1] was founded.
More extensive description of the project can be found also in [19].

4 Environment Simulation

Based on the discussion above, we propose to develop a Software Component
Model Checker, which implements the Environment Simulation concept. To fa-
cilitate the verification, we have to simulate a component environment by gen-
erating events that will be absorbed by the component. The component is then
forced by JPF to respond to these artificially created events, its behavior is
evaluated and thus the component is being verified.

4.1 Cooperation

Since each tool operates at a different level of abstraction - JPF with byte-code
instructions and BPChecker with events, we need to define a proper mapping
between their state spaces to achieve cooperation. This would be possible if states
that represent absorbed events could be identified. Whereas this is inherently
satisfied inside the BPChecker state space, the JPF state space represents only
the component itself. To tackle this problem, we have extended the JPF state
space with states that represent communication between the component and its

Fig. 3. State Space Mapping

78 A. Pľsek and J. Adámek

environment. Therefore we are able to find a mapping between state spaces of
the checkers. See Fig. 3 for an illustration example.

4.2 Environment Simulation

The environment simulation process generates events that occur on interfaces of
the component. These events have to be then inserted into the JPF, afterwards
the verification can continue. We are able to determine which event has to be
inserted in cooperation with BPChecker. Consequently, state space extensions
allow to simulate an absorbed event by creating a new state and by inserting it
into the JPF. Verification then continues from a newly inserted state and thus,
the component is forced to react to the new event.

Moreover, by employing the backtracking strategy we are able to simulate
every possible sequence of events. The component is therefore verified against
every behavior of its environment that is in conformance with a behavior protocol
of this component.

An absorbed event is however representing also a data which are being trans-
formed from an environment to the component and these data have to be gen-
erated as well. We refer to this in Section 5.2.

4.3 Verification

The central unit of the verification process is Manager. It communicates with
both the checkers, arbitrates the cooperation between JPF and BPChecker and
determines future steps of the verification. Manager evaluates states of the check-
ers and decides which events will be simulated on interfaces of the component.
Figuratively speaking, JPF represents the component, BPChecker represents its
environment and Manager provides a connecting layer between them.

To better illustrate the role of Manager, we introduce code snippets of meth-
ods which are used by Manager to control the progress of the verification. The
method stateAdvanced() listed in Fig. 4 handles a situation when JPF ad-
vanced a new state. First, Manager verifies if there was any emitted event and
whether it was in compliance with a given behavior protocol (line 2-3). Con-
sequently, Manager tries to simulate a next event, if BPChecker proposes any
event, it is simulated, both tools are notified and we proceed to a new state (lines
5-8). If there is no event to simulate, Manager only verifies that both tools are
in accepting states in case the end of an execution path was reached.

The method stateBacktracked(), listed in Fig. 4 (line 15), handles situations
when JPF backtracked from an already explored state. The task of Manager is
to backtrack also a simulated event and then to simulate a new one (lines 20-22).
If there is no event to simulate, nothing is to be done since all paths starting by
events were already explored.

Thanks to these notification methods Manager is able to coordinate coop-
eration of both checkers and thus to achieve an exhaustive verification of all
execution paths of the component implementation.

Carmen: Software Component Model Checker 79

void stateAdvanced () {
2 i f eventEmitted ()

BPChecker . ve r i fyEvent (emittedEvent) ;
4 newEvent = BPChecker . getEvent () ;

i f newEvent != null
6 JPF . s imulateEvent (newEvent) ;

BPChecker . eventSimulated (newEvent) ;
8 stateAdvanced () ;

else
10 i f JPF . isEndofExecutionPath () && BPChecker . i sNotAccept ing ()

reportErrorBehav ior () ;
12 }

14 void s tateBacktracked () {
i f isEventToBacktrack ()

16 BPChecker . backtrackEvent (event) ;
newEvent = BPChecker . getEvent () ;

18 i f newEvent != null
JPF . s imulateEvent (newEvent) ;

20 BPChecker . eventSimulated (newEvent) ;
stateAdvanced () ;

22 }

Fig. 4. Manager Arbitrating an Advanced/Backtracked State

4.4 Motivation Example Revisited

In this section we revisit the motivation example from Section 2.3 to demonstrate
the verification process. The Fig. 5 shows the implementation of the Database
component together with its behavior protocol. The arrows are showing the
correspondences between events of the behavior protocol and method calls inside
the component implementation code.

From JPF point of view, every event absorbed by a component is represented
inside the JPF VM as a thread which invokes a given method on a particular
interface. On the other hand, an emitted event is represented as a thread invoking
a method on an interface of another component.

Considering our example, both checkers are in their initial states at the be-
ginning, there are no threads in JPF VM. Manager therefore asks BPChecker
for a list of events which can be simulated. According to the protocol, an event
?db.start is proposed. This event is then simulated, a new thread which in-
vokes the method start on the interface db is created inside JPF. From now
JPF starts with the verification of the component’s code. This process is moni-
tored by Manager and interrupted whenever the component tries to communicate
with its environment. Here, such situation occurs when the component invokes
lg.log. Manager immediately stops the verification and verifies that the emitted

80 A. Pľsek and J. Adámek

Fig. 5. Example of the Verification

event conforms to a given behavior protocol. Then the thread is interrupted
until the moment when BPChecker proposes a simulation of an event which
represents a response to the invoked call. In between, the verification of parallel
threads inside the JPF state space can continue.

Looking at the behavior protocol in Fig. 5, we can see that an event lg.log
does not have any corresponding method call in the component implementation,
in Fig. 5 indicated by a question mark. During the verification, JPF executes
the method stop, reaches its end and notifies BPChecker. However, the the
protocol specifies that during the stop method execution, an even !lg.log will
be emitted. Since no such event occurred, it is an obvious behavior protocol
violation and an extensive report (including stack traces of both checkers) will
be send to the developer.

Except the component’s behavior, which is verified whenever the component
emits an event, the JPF checker itself verifies additional properties, e.g. the
presence of deadlocks, unhandled exceptions or any other user defined properties.
This finally leads to an exhaustive verification of every property along all the
execution paths of the component’s implementation.

5 Evaluation

As the biggest contribution of our work we consider the Environment Simulation
concept that straightforwardly solves the missing environment problem. Contrary
to the COMBAT checker [17] described in Section 6, we do not require any
reductions of behavior protocols; therefore, our approach provides an exhaustive
simulation of the environment and correct verification of components.

Carmen: Software Component Model Checker 81

To show the quality of our method, we developed a prototype implementation
– Carmen Project [1]. The tool verifies Fractal software components [3] imple-
mented in Java against their behavior protocols and the sets of user-defined
properties. In this section we present the performance evaluation and discuss
the limitations of our tool.

5.1 Case Studies and Performance Evaluation

For performance evaluation, we used real-life case studies from the Component
Reliability Extensions for Fractal component model (CRE) [6] and CoCoMe [2]
projects.

CRE is an application that manages the airport services for wireless inter-
net connection. It consists of more then twenty components. We have selected
three non-trivial components for verification3: the FlyTicketClassfier component
classifies air tickets and provides connections to the appropriate database, the
ValidityChecker component verifies the airtickets, and the Arbitrator component
controls the whole system.

For the second part of the performance evaluation, we used the Fractal im-
plementation of the Store and CashDeskExample components from the CoCoMe
case study [8], addressing the simulation of cash desk system in a supermarket.

For the performance evaluation, we did several comparison tests between Car-
men and COMBAT, using the code of the components mentioned above. The
following parameters have been monitored: Unique States (number of unique
states that were reached), Visited States (total number of reached states), Time
(total time of the verification), and States/Second (the number of states visited
per second).

The results of the performance evaluation4 are presented in Table 1.
While COMBAT verifies a closed system (including the generated environ-

ment), Carmen simulates the environment during the verification and therefore
the progress of the verification is slower. This can be observed when verifying the
components from the CRE case study — FlyTicketClassifier, ValidityChecker,
and Arbitrator. However, the state space of COMBAT is larger, which is caused
by the necessity to include the generated environment. Thus, the total verifica-
tion time is better for Carmen in all the three cases and the difference between
the total verification times (Carmen vs. COMBAT) is the bigger the larger the
state space is.

As to the verification results for the CoCoMe case study (CashDeskApp,
Store), Carmen again generates considerably smaller state spaces and the veri-
fication times are reasonable. However, the COMBAT tool achieves better total
verification time. We believe that this is caused by the recent progress of the
COMBAT tool which was ported to a newer version of JPF (version 4), whereas

3 More detail information regarding these components, the whole case study, and the
Carmen documentation can be found at the project web page [1].

4 All the tests were run on Pentium 4 3.0 GHz with 2.0 GB RAM, Windows Server
2003 OS.

82 A. Pľsek and J. Adámek

Table 1. Performance Comparisons

Case Component Checker # States Time States/
Study Name Unique Visited Second

CRE FlyTicketClassifier Carmen 922 1 920 3s 640
COMBAT 6 519 10 254 4s 2563

CRE ValidityChecker Carmen 435 592 2s 296
COMBAT 4 033 9 324 4s 2331

CRE Arbitrator Carmen 6 074 14 898 34s 438
COMBAT 166 977 378 437 9m:30s 663

CoCoMe CashDeskApp Carmen 3 480 851 6 644 606 1h:32m:17s 1200
COMBAT 4 839 108 10 541 046 33m:26s 5 254

CoCoMe Store Carmen 574 538 1 717 282 2h:29m:09s 192
COMBAT 11 669 994 28 728 733 1h:49m:08s 4 387

Carmen uses an old one (version 3.3.1). We reflect this finding in our future work
(Sect. 7).

The bottom line is that Carmen is able to verify complex components in a
reasonable time without any reductions of behavior protocols. The confrontation
with COMBAT, which requires additional reductions of behavior protocols, has
revealed that Carmen reaches fully correct verification and comparable perfor-
mance.

5.2 Tool Limitations

Even though our approach potentially achieves exhaustive verification, the real-
life application brings several limitations. Specification of parameters that are
passed to the methods when generating events is the most important burden
to deal with. The range of possible values has to be manually specified and its
extensiveness directly affects the state space size. Therefore, the values should
be chosen with respect to the component implementation, to allow the checker
to explore maximum of execution paths. The details are out of scope of this
paper, we briefly discuss some of them in Sect. 6.

More detailed evaluation of Carmen and a discussion of its limitations can be
found in [19].

6 Related Work

COMBAT [17] uses, similarly to the approach applied in our work, JPF in co-
operation with BPChecker. It generates a virtual environment that is verified
together with the component (see Section 3.1). For more information about the
environment generation see [16]. However, the significant disadvantage of this
checker lies in the absence of any solution to repetition and alternative opera-
tor problems addressed by Carmen. Instead, behavior protocols are simplified in

Carmen: Software Component Model Checker 83

order to avoid unsupported forms of protocols. These constraints consequently
lead to a non-exhaustive verification of components. Nevertheless, we demon-
strate the performance comparisons between both the approaches in Section 5.

Also, our approach is related to the assume-guarantee principle in model
checking [13]. The tools based on this principle report the description of all
the environments in which a given model satisfies a given property. We also use
the idea of environment, but in the opposite manner: the description of the en-
vironment behavior (the calls from the environment to the component described
in the behavior protocol) is given by the developer and the tool checks whether
the property is satisfied in the environment. Note that the property itself is also
specified by the behavior protocol (the reaction of the component to the calls
made by the environment).

When searching for an equivalent alternative to Java PathFinder [4], we have
been considering an alternative — Bandera [10]. It is a set of tools and modules
which are designed to verify Java programs. Bandera accepts a complete Java
program as an input and translates it into a language that can be verified by
a specified model checker. Although Bandera is not intended to verify software
components, it decomposes a target program into a part which is verified and
the rest that is represented by specially generated environment. This approach
is very similar to the Environment Generation concept presented in Section 3.1.
Bandera also allows to use value domains for specifications of method parameters
of given classes. However, the recent release of Bandera is an alpha version which
is not fully stable yet.

Finally, we chosen Java PathFinder [4] as the basis of our implementation
since it allows modification of its core implementation and is designed to support
extendability by additional plugins.

In our work, we mainly focus on the verification of the order in which the
methods of the component are called; another big issue is to cope with the values
of the parameters that are passed to the methods. We use very simple heuristic
approach to solve this problem, more sophisticated methods can be found e.g.
in [11] or [14]: under-constrained execution [11] is a special kind of symbolic
execution, where some of the symbolic values (e.g. those that origin from the
parameter values) are marked as under-constrained. If an error involves an under-
constrained operand, an error message is produced only if the error occurs for
all possible values of the operand (according to its type). This approach reduces
the number of spurious errors. In [14], symbolic execution with lazy initialization
is used to adapt Java PathFinder for verification of open systems: the method
parameters are initialized during the execution in a lazy way; the exact value
domains are not required from the developer.

7 Conclusion

In this paper, we present our approach to model checking of software com-
ponents. Our solution verifies software components implemented in the Java

84 A. Pľsek and J. Adámek

language against their behavior specifications (behavior protocols [18]) and sets
of user-defined properties. To achieve the goal we designed a system that coor-
dinates two model checking tools: Java PathFinder [4] and BPChecker [15]. Our
solution was implemented as the Carmen tool [1].

Carmen employs on-the-fly simulation of software component environment to
enclose the model representing implementation of an isolated software compo-
nent. We consider this feature as the biggest contribution of our work.

Scalability of our approach was tested on real-life examples and the results
show that our solution provides reasonable performance and brings fully correct
verification.

As a future work we plan to improve performance of our tool by porting it to
the most recent version of Java PathFinder (and thus to fully use its state-of-the
art verification heuristics).

Acknowledgments

Special thanks go to the Distributed Systems Research Group, in particular to
Jan Kofroň and Pavel Parizek, for helping with BPChecker integration and for
assistance during performance testing.

This work was partially supported by the Grant Agency of the Czech Repub-
lic project 201/08/0266, by the ANR/RNTL project Flex-eWare and by the In-
teruniversity Attraction Poles Programme Belgian State, Belgian Science Policy.

References

1. Carmen Project (2008), http://www.lifl.fr/∼plsek/projects/carmen/
2. CoCoMe Project (2008), http://agrausch.informatik.uni-kl.de/CoCoME
3. Fractal Project (2008), http://fractal.ow2.org/
4. Java PathFinder Model Checker (2008),

http://javapathfinder.sourceforge.net/

5. SOFA Project (2008), http://sofa.objectweb.org/
6. Adamek, J., Bures, T., Jezek, P., Kofron, J., Mencl, V., Parizek, P., Plasil,

F.: Component Reliability Extensions for Fractal Component Model (2008),
http://kraken.cs.cas.cz/ft/public/public index.phtml

7. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier,
Amsterdam (2001)

8. Bulej, L., Bures, T., Coupaye, T., Decky, M., Jezek, P., Parizek, P., Plasil, F.,
Poch, T., Rivierre, N., Sery, O., Tuma, P.: CoCoME in Fractal. In: Proceedings of
the CoCoME project (June 2007)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

10. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Laubach, R.S., Zheng, H.:
Bandera: Extracting Finite-state Models from Java Source Code. In: Proc. of the
22nd International Conference on Software Engineering (June 2000)

11. Engler, D., Dunbar, D.: Under-constrained Execution: Making Automatic Code
Destruction Easy and Scalable. In: International Symposium on Software Testing
and Analysis (ISSTA) (2007)

http://www.lifl.fr/~plsek/projects/carmen/
http://agrausch.informatik.uni-kl.de/CoCoME
http://fractal.ow2.org/
http://javapathfinder.sourceforge.net/
http://sofa.objectweb.org/
http://kraken.cs.cas.cz/ft/public/public_index.phtml

Carmen: Software Component Model Checker 85

12. Groce, A., Visser, W.: Heuristics for Model Checking Java Programs. Int. Journal
on Software Tools for Technology Transfer (STTT) 6(4)

13. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component Verification with
Automatically Generated Assumptions. Journal of Automated Software Engineer-
ing 12(3) (July 2005)

14. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized Symbolic Execution for
Model Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003.
LNCS, vol. 2619. Springer, Heidelberg (2003)

15. Mach, M., Plasil, F., Kofron, J.: Behavior Protocol Verification: Fighting State
Explosion. Published in the Int. Journal of Computer and Inf. Science 6(1), 22–30
(2005)

16. Parizek, P., Plasil, F.: Specification and Generation of Environment for Model
Checking of Software components. In: Proc. of Formal Foundations of Embedded
Software and Component-Based Software Architectures, vol. 176(2) (May 2007)

17. Parizek, P., Plasil, F., Kofron, J.: Model Checking of Software Components: Com-
bining Java PathFinder and Behavior Protocol Model Checker. In: Proceedings of
30th IEEE/ NASA Software Engineering Workshop (SEW-30) (January 2007)

18. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Trans-
actions on Software Engineering 28(11) (November 2002)

19. Plsek, A.: Extending Java PathFinder with Behavior Protocols. Master The-
sis (2006), http://www.lifl.fr/ plsek/projects/carmen/download/documents/

masterThesis.pdf

20. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Professional, Boston (2002)

21. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering Journal 10(2) (2003)

http://www.lifl.fr/~plsek/projects/carmen/download/documents/masterThesis.pdf
http://www.lifl.fr/~plsek/projects/carmen/download/documents/masterThesis.pdf

MOSES: MOdeling Software and platform architEcture
in UML 2 for Simulation-based performance analysis

Vittorio Cortellessa1, Pierluigi Pierini2, Romina Spalazzese1, and Alessio Vianale3

1 Dipartimento di Informatica
Università dell’Aquila

Via Vetoio, 67010 Coppito (AQ), Italy
{cortelle,romina.spalazzese}@di.univaq.it

2 TechnoLabs S.p.A.
S.S. 17 Località Boschetto
67100 L’Aquila (AQ), Italy

pierluigi.pierini@technolabs.it
3 Accenture S.p.A.
Largo Donegani 2,
20121 Milano, Italy

alessio.vianale@accenture.com

Abstract. Performance analysis at the architectural level has been a widely stud-
ied topic in the last few years. Automated solutions to this problem, such as
the ones based on model transformations, would allow early detection of per-
formance critical aspects in the software lifecycle. In this paper, building on top
of our existing methodology [11] that aims at integrating software architectural
models and platform models in the same notation (UML-RT), we present a new
implementation based on the UML 2 metamodel that we call MOSES (MOdeling
Software and platform architEcture in UML 2 for Simulation-based performance
analysis). The goal of this paper is to provide a proof of concept that the UML
2 metamodel is rich enough to implement our approach that aims at modeling
software and platform architecture within the same environment for sake of per-
formance analysis. Finally we compare the results that we obtain with MOSES
to the ones that we have obtained with the UML-RT implementation.

Keywords: Software Performance, Resource Modeling, UML, Simulation.

1 Introduction

The performance analysis of software architectures is a crucial issue in the wider do-
main of architecture verification and validation. In fact, as an emerging property, perfor-
mance issues easily enter into the software lifecycle too late to be fixed, thus incurring,
at the best, in expensive rework on the whole software project and, at worst, in a com-
plete project failure.

In the last few years, several approaches (mostly based on model transformations)
have been introduced to tackle this challenge. We have recently worked on a different
approach, which basically allows the designers to not change notation only for sake of
architectural validation. We intend to provide means to integrate a software architectural

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 86–102, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MOSES: MOdeling Software and platform architEcture in UML 2 87

model with a platform architectural model using the same notation, and to add in the
same model all the necessary annotations for performance validation. Where successful,
this approach allows to estimate the performance of a software architecture on multiple
platform architectures without underlying (possibly incorrect) model transformations.

In this paper we build on top of a general methodology that we have implemented in
UML-RT [9,10,11] with the aim to migrate the implementation in UML 2. We call this
new implementation MOSES (MOdeling Software and platform architEcture in UML 2
for Simluation-based performance analysis). Our aim is to provide in UML 2 a perfor-
mance validation methodology at the architectural level that is ”transparent” and easy
to use for the software designers and also easy to integrate in the software develop-
ment life cycle. The general methodology is independent of the modeling notation and
the development environment adopted by the designers to model the software architec-
ture. However, we provide here the proof that the UML 2 metamodel is rich enough to
represent software and platform architectural models as a new implementation of our
performance analysis methodology. By ”rich enough” we mean that UML 2 embeds
all the notation elements that are needed to implement our approach. This property,
however, it does not necessarily hold for other types of approaches.

From software developers point of view the idea of integrating software and platform
architectural models for performance validation is only acceptable if the integration
does not bring changes to the software architecture and their development practices.
In other words, the ”transparency” is a key factor for such an approach and it is one
of the major achievements of our methodology in that it only adds new elements to
the software architecture to represent: (i) the platform architecture, (ii) the requests of
resources that software components make to the platform.

A significant effort has been spent to select the appropriate supporting UML 2 CASE
tool to implement the methodology. Being our approach based on simulation, we needed
to consider CASE tools that, in addition to the UML 2 standard notation, support the
model simulation and allow the designers to work in a single, stable environment.

The first implementation of our approach was supported by the IBM Rational Rose
Real Time (RRT) tool, which is based on the UML Real Time (UML-RT) notation [23].
RRT has been chosen because of: (i) its market predominance; (ii) the availability of an
integrated simulation environment; (iii) the presence of a powerful scripting language
that allowed us to complete our framework with a set of supporting procedures.With the
aim to achieve the maximum level of ”transparency”, we have created a set of scripts
that allows the designers to insert and/or remove: (i) service provisioning points in the
software model; (ii) the related connection to the service access point in the platform
model; (iii) the code required to formulate the resource requests from software to plat-
form. Furthermore, a number of industrial case studies were specified and simulated
with the RRT support with satisfactory results [11].

In this paper we present MOSES, the new implementation of our methodology based
on the UML 2 metamodel [4] which allows the modeling of software and platform archi-
tecture for simulation-based performance analysis within the same modeling environ-
ment. This new implementation is based on a mapping between UML-RT stereotypes
and UML 2 metaclasses and can work within any UML 2 tool with simulation capa-
bilities. This is due to the MOSES capability of working within the UML 2 standard,

88 V. Cortellessa et al.

without needing, like UML-RT, any UML profile definition. In order to validate this
porting step, we have compared the results obtained with MOSES on a case study with
the ones obtained with the original implementation in UML-RT on the same case study.

The remainder of the paper is organized as follows: in Section 2 we review relevant
related work, Section 3 briefly resumes the basic concepts of our methodology, in Sec-
tion 4 we describe the available tool support for modeling and simulation, pointing out
the relevant differences between different tools, in Section 5 we describe the main char-
acteristics of MOSES and we present the results obtained on a case study, and finally in
Section 6 conclusions are provided.

2 Related Work

A large number of approaches concerning modeling and simulation of software and
platform architectures for sake of performance analysis have appeared in literature.

Some of these approaches deal with models that are not described in UML and we
provide two relevant examples. The work in [25] which is based on resource data com-
ing from Resource Function Management Utility (RFMU) [26] and on the ObjecTime
environment that supports the execution of a design model to produce software execu-
tion traces allowing the automated generation of a performance model based on Layered
Queuing Networks [20]. A new component metamodel has instead been introduced in
[19] to represent component-based software systems and to study different properties
such as their performance [21].

In other approaches, although models are represented in UML they are not translated
into simulation models, but they are transformed in different performance notations,
like Queuing Networks, Petri Nets and Process Algebras [7]. Special cases of these
approaches are the works in [13,18]. Both translate a software model in an intermediate
model that is in turn transformed in a performance model.

A direct comparison with all these approaches is not appropriate here because they
all are based on model transformation whereas we integrate platform models and an-
notations into software models. In other words we integrate in one notation software
and platform models plus annotations, thus building a performance model in the same
notation [11].

With respect to the validation of UML models based on simulation, we do not con-
sider for comparison approaches like [15,6,17] in which simulations provide only a
mean to observe the system dynamics, without collecting performance indices.

Instead the approach in [8] exploits Use Case and Deployment Diagrams perfor-
mance annotations and translate them into simulation code whose execution produces
performance indices that can be annotated back on the original diagrams. In [27] the
capability of introducing additional code on states and transitions of UML-RT state di-
agrams has been exploited to build a framework for verification of timing constraints
in real-time systems. In [22] the MASCOT design language is integrated with time and
resource representations to build simulation models for system performance analysis.

After the standardization of UML 2 several new approaches and engines have been
proposed. In [14] UML 2 diagrams are used for developing and evaluating network
protocol simulation models in an event-driven simulation framework called OMNeT++.

MOSES: MOdeling Software and platform architEcture in UML 2 89

The SYNTONY framework translates the XMI format of the UML 2 annotated models
into executable network simulation models in C++ (the input format of OMNeT++).

In [12] the proSPEX methodology and tool are described for the design and perfor-
mance analysis of communication protocols specified with UML 2 extended with ITU
Z.109 profile. proSPEX exploits some features of Tau G2 tool (i.e., modeling, design
checking, XMI exporting) and allows the translation of some UML 2 models into SDL
specifications. Moreover the methodology allows the analysis of models with process-
oriented simulation.

With regard to simulation engines, IBM has proposed a generic model execution en-
gine, as reported in [16]. The engine has been developed for the construction, execution,
control and observation of model behavior, and it is used to implement a UML Model
Simulator as extension to Rational Software Architect (RSA) with execution and de-
bugging capabilities. In this direction we still expect a new IBM Rational tool offering
design and simulation facilities as it is in Rose RealTime [2], Telelogic TAU G2 tool
[3] and ARTISAN Studio tool [1].

Our approach is conceptually independent of the specific simulation engine adopted.
It has been conceived to be general enough to model architectures in different applica-
tion and environmental domains. As an example, although the work in [22] may seem
similar to ours, our approach is more general because our implementations have been
built in the standard and widely adopted UML-RT profile and in UML 2 notations.
Moreover our approach, basing on simulation, has the advantage to allow to the sys-
tem designers to handle problems at different levels of abstraction to get results that, in
some cases, are not experimentally measurable with the current level of technology. At
the same time the approach presents the typical disadvantage of simulation that is an
intensive computation that can imply long execution times to get reliable results.

3 The General Methodology

The general methodology basically proceeds through the following steps [9,10,11]1:

1. Separately build a software architectural model and a platform architectural model.
2. Merge software and platform model to obtain an integrated architectural model.
3. Annotate the integrated model with data related to performance.
4. Simulate the annotated model to obtain the indices of interest.

The methodology was previously implemented using the UML-RT notation [2] that
is an UML 1.x profile for real-time systems. The whole methodology implementation,
therefore, was constrained to be run on simulation tools able to accept UML-RT models
as inputs. In this paper we present the porting step that we have accomplished to rep-
resent basic elements of UML-RT in UML 2. This step allows to run the MOSES over
any UML 2 simulation tool, thus widening by far its scope.

We focus here on the first step of the methodology, because it represents the step
where basic elements of the modeling notation are manipulated. All the following steps

1 For sake of space, we do not provide many details about our UML-RT implementation, how-
ever interested readers can refer to the cited papers.

90 V. Cortellessa et al.

remain the same, once initial models have been built, because they are not specifically
bounded to the adopted modeling notation.

In particular, we have worked to find a suitable mapping between UML-RT basic
elements and UML 2 metamodel elements. The challenge that we faced was to find a
reasonable mapping that can avoid modelers to adopt any specific UML profile and,
instead, allows them to work within the standard UML 2.

The resource model (platform architectural model) built in the first step is based
on the general definition of platform proposed in [24] that describes it as a processing
system partitioned into processing nodes. Each processing node consists of physical
resources and a system environment (e.g., a PC or a workstation) offering a set of ser-
vices to the hosted software applications whose design depend on the type of applica-
tion. Thus a platform can be modeled by processing nodes each one embedding a set of
private (local) resource instances plus additional supporting components. The platform
can be represented only by the resources that play a critical role in the performance
analysis and not necessarily by the complete processing environment.

Depending on the platform characteristics, one or more processing nodes have to be
modeled in the platform model of the integrated architecture.

In figure 1 we show an integrated model whose platform is made of only one pro-
cessing node. Each processing node has a three-layers structure. The bottommost layer
contains the instances of the local resources (the Round-Robin CPU of 1. The upper-
most layer contains the Main Dispatcher component that provides a single access point
to send resource requests from software side to a node (in this case to the only one that
is present). All the software components hosted on the same site send to the same Main
Dispatcher their resource requests. We assume that each request is originated from a
software action that may be performance critical, and it is encoded as a vector made
of elementary demands. Each elementary demand represents the amount of a resource
category that the action needs to be executed.

The Main Dispatcher, following its own strategy, dispatches each elementary de-
mand to the Internal Dispatcher that manages the corresponding category of resources
in the intermediate layer. Every Internal Dispatcher, in turn, following its own strategy,
forwards each elementary demand to one of the resource instances that it manages (in
the example in figure 1 it manages only one RoundRobinCpu). Thereafter a “demand
satisfied” message is replied back from the resource, through the Internal Dispatcher,
to the Main Dispatcher. Once all the elementary demands making up a resource re-
quest have been satisfied, the Main Dispatcher updates counters and data required for
performance evaluation on a per request basis.

The statistical data that can be collected per request are usually related to the total
execution time of the request itself. Thus, assuming that a request is made of several
elementary requests, the total execution time is the time for completing the processing
of all the elementary requests.

The previous implementation of this methodology, was based on a resource model
based on a library of prototypes that we have built in UML-RT and that we called PAlib.
It is a repository of Capsules and Statecharts, where each pair <Capsule, Statechart>
represents a (static and dynamic model of a) specific type of platform element, such as
a Round-Robin CPU. These building blocks can be easily used to assemble a platform

MOSES: MOdeling Software and platform architEcture in UML 2 91

Fig. 1. An integrated architectural model

92 V. Cortellessa et al.

architectural model by instantiating, configuring, and connecting them together. The
obtained platform model will be then integrated with a software architectural model.

More specifically, the PAlib can be partitioned in the following types of elements:

1. Resource prototypes, that model static and dynamic characteristics of physical
resources such as CPUs, mass memories, network connections;

2. Dispatching components, that models middleware components that offer uniform
platform interfaces to the software model;

3. Utilities required to model probes, service request queues, etc;

Besides, we provided a set of procedures and rules to support the construction of a
platform architectural model, to integrate it with the software architectural model and to
define resource request points, that are the critical points of the software model where a
resource request is formulated. As for the latter aspect, we provide the possibility (at the
integration time) to annotate resource demands on the software component operations
(i.e. Statechart transition) that can be critical with respect to performance. Optional
annotations allow to concentrate software developers on critical aspects and subsystems
of their architecture.

The simulation of an integrated architectural model allows to simultaneously take
into account the software dynamics and the platform mechanisms that generate critical
latency time in the software execution, mostly due to the resource contention.

In this paper we migrate PAlib to the UML 2 representation.

4 Tool Support to MOSES

When we have implemented our methodology in UML-RT, software designers used the
UML 1.x standard version, Rational tools were recognized the more advanced ones for
simulation support and they were widely used by software companies. In particular,
Rose Real Time (RRT) [2] allowed us, along with the UML SPT profile [5], to easily
model the dynamic behaviour of the resource models. In addition, RRT was equipped
with an integrated simulation environment and with a powerful scripting interface.

Table 1. UML 2 Modeling Tools (S = Supported; N = Not supported)

Tool name Simulation Company WWW
Magic Draw N No Magic http://www.magicdraw.com
Poseidon for UML N Gentleware http://www.gentleware.com
Apollo for Eclipse N Gentleware http://www.gentleware.com
Enterprise Architect N sparxsystems http://www.sparxsystems.com
TAU G2 S Telelogic http://www.telelogic.com
Omondo N Eclipse http://www.eclipsedownload.com
Artisan Studio S ARTISAN Software http://www.artisansw.com
Visual Paradigm for UML N Visual Paradigm Int. Ltd. http://www.visual-paradigm.com
Rational Software Modeler N IBM http://www.ibm.com
Together N Borland http://www.borland.com

MOSES: MOdeling Software and platform architEcture in UML 2 93

After the release of the UML 2 metamodel, a number of related tools have been
created and much effort is continuously spent to extend and improve them. All these
tools (some of which are listed in Table 1) provide visual modeling facilities, but at the
moment only two of them (i.e. Artisan Studio and Telelogic Tau G2) offer an integrated
simulation facility. This was one of the two requirements that we had for selecting the
tool to run our UML 2 implementation. The other requirement was the possibility to
insert code into the dynamic models, in particular into states and transitions between
states. This capability is necessary to model resource requests originated from the soft-
ware side.

Finally we have chosen Telelogic Tau G2 due to the peculiarities of its simulation
environment briefly presented and compared with RRT in this section. The simula-
tion environment provided by both RRT and TAU G2 is conceived to support systems
engineers and software architects in verifying the correctness of the designed solution.
It is possible to detect and fix errors and problems, since the early stages of the devel-
opment life-cycle, by directly working on models. Both simulation engines can execute
the models and provide graphical execution traces through Sequence Diagrams or al-
low step-by-step animation on Statecharts. In addition, a log file may be produced with
details on the sequence of execution events. It is also possible to define and monitor
some instance properties like attribute values, activity queues, current state in the Stat-
echarts, etc.

From a performance analysis viewpoint, we have used both simulation engines as
integrated model executors. Our simulations follow the evolution of the internal logic
of the software and platform architectural components, thus computing the relevant
performance parameters by means of the enabled probes.

One of the main differences of these simulation environments is the way they manage
the time. RRT strategy is based on the machine real time clock. Thus, the time evolu-
tion during model execution can be significantly affected by the host environment (i.e.
concurrent processes, CPU speed, etc.). While this problem may not be a main issue
during model debugging and refining, it can represent a serious problem for perfor-
mance indices computing because it is strictly coupled with time. To solve this problem
we needed to implement a ”simulation time abstraction layer” that manipulated the ”tar-
get library” provided by RRT itself. In this way we have been able to run simulations
based on a virtual clock that can be tuned with respect to the machine clock to guaran-
tee the correct computation of performance indices. On the other hand, time required
to complete the simulation for performance analysis might become too high. The worst
case we experienced was 20 minutes for 1 second simulation.

The TAU G2 tool adopts a completely different strategy for time management. The
time evolution during the model execution is not related at all to the host real time clock,
rather it is based on the model event timing. All the scheduled events are enqueued
basing on their trigger time. As soon as an event has been completely processed, the
next event is scheduled and the simulation time is updated to the value of the trigger
time of such event. The TAU G2 strategy is very efficiently implemented, it allows to
speed up the whole simulation time and to guarantee an accurate performance indices
estimation.

94 V. Cortellessa et al.

5 MOSES: The UML 2 Implementation

In order to tackle MOSES, that is the implementation in UML 2 of the general method-
ology (with the support of the TAU G2 environment) we have first studied the syntax
and semantics of the UML 2 metamodel to find the relationships between UML-RT
entities and UML 2 classifiers. Once completed this task, the implementation of the
methodology proceeded as a straightforward activity.

The most important UML-RT entities to model resources and dispatching prototypes
were capsules, ports and protocols. The corresponding classifiers we have identified
in UML 2 are active classes, ports, and interfaces. Moreover, the internal behavior of
classes and capsules in both UML-RT and UML2 can be modeled with Statecharts.

We had exploited the RRT capability to add source code into states and/or transitions
in order to implement modeling details like: message sending between capsules, coun-
ters and probes computation, job queuing, and resources scheduling strategies. Writing
code implies for the designers to move down their activity from the high level abstrac-
tion of the model to a lower implementation level.

With TAU G2 the designer is supported by a graphical language called SDL (Stan-
dard and Description Language), that is ITU-T Z.100 Recommendation, to describe
Statecharts and to model actions. The SDL blocks represent the placeholders to include
source code when the design progresses towards the implementation. Thus, design-
ers can exploit SDL capabilities to delay the platform architecture specification of the
required computational details.

5.1 Mapping UML-RT Stereotypes into UML 2 Metaclasses

We provide here a more detailed description of the metaclasses used in our software
and platform architectural models and also the rationale that has led us to define such
correspondences. Clearly the mapping presented here is one of the sound mappings that
could be found. We have summarized the mapping of UML-RT stereotypes and UML
2 metaclasses in Table 2, and in the following we comment each row of the table.

Table 2. Model entity mapping between UML-RT and UML2

UML-RT STEREOTYPES UML 2 METACLASS

Capsule Active Class
Port Port

Protocol Interface
Signal Signal

Connector Connector
Class Class

UML-RT Capsule - UML 2 Active Class. Capsules are the fundamental modeling
element of real-time systems in UML-RT. Like Classes in UML 1.x, they can have op-
erations and attributes and may also participate in dependency, generalization, and as-
sociation relationships, but differently from Classes they represents independent flows

MOSES: MOdeling Software and platform architEcture in UML 2 95

of control in a system. They also have several properties that distinguish them from
Classes such as: the possibility to own public ports, the nesting to specify their inter-
nal organization and behavior, the message passing instead of method invocation, state
machines for defining behavior instead of operations.

Differently from UML 1.x, the UML 2 Class is more expressive and can own ports
as interaction points to send and receive signals, admits the nesting and can describe
its internal behavior with a state machine. Thus we have naturally mapped an UML-RT
Capsule in an UML 2 Active Class, that is a Class with a different thread of control for
every class instance. Since an UML 2 Port is public by default, in order to precisely
map the Capsule semantics an UML 2 Active Class only needs an elementary detail: to
declare class operations and attributes as private thus leaving the only communication
means to be public ports and signals.

UML-RT Port - UML 2 Port. The UML-RT Port is a fundamental classifier that de-
scribes the communication between Capsules. In our approach it is particularly relevant
to highlight the exchange of resource demands between software and platform archi-
tectural models. Ports are objects that send/receive messages to/from capsule instances.
Each port has its own identity but they are owned, created and destroyed by their cap-
sule instance. To specify the set of messages sent to and from a port, a port is associated
with a protocol role. The protocol role essentially defines the port type. In order for two
ports to be connected by a connector, the ports must be compatible, namely every signal
in the ’Out’ set of one protocol role must be in the ’In’ set of the other protocol role.

The Port Classifier, which did not exist in UML 1.x, has been introduced in UML
2. The semantics is quite similar to the one of UML-RT, that is the port represents an
interaction point between a classifier (Class and/or Component) and its environment.

The main difference is in the definition of the interaction between two ports con-
nected by a connector. In order to specify which messages can be sent to and from a
port, in UML 2 the port is associated with interfaces, whereas in UML-RT the port is
associated with protocol roles.

UML-RT Protocol - UML 2 Interface. An UML-RT Protocol is a contractual agree-
ment defining the valid types of messages that can be exchanged between the partic-
ipants in the protocol. Therefore a protocol is composed of the different participants,
called protocol roles, that are defined by sent and received messages. Protocols are
primarily used to identify the type of a port, where the latter plays the role of one par-
ticipant in a communication relationship.

The classifier we adopted in UML 2 to map an UML-RT Protocol is Interface. An in-
terface specifies a contract. It represents a declaration of a set of coherent public features
and obligations and it is not possible to instance it. Instead, any instance of a classifier
that realizes the interface must fulfill that contract. The set of provided interfaces of a
classifier, which represent obligations, are the services offered to its clients. Instead, the
services that a classifier needs in order to perform its functionalities specify its required
interfaces that fulfill its own obligations to its clients.

UML-RT Signal - UML 2 Signal. The Signal classifier did not undergo significative
changes. It has the same semantics in both modeling languages, UML-RT and UML2. A
signal event occurs when a signal message, originally caused by a send action executed

96 V. Cortellessa et al.

by some object, is received by another object. It may be originated by actions or by the
execution of an operation, and it represents the reception of a particular asynchronous
message. The receipt of a signal event usually triggers a state transition in the state
machine of the target object.

UML-RT Connector - UML 2 Connector. Connector in UML-RT is the element that
allows interconnection for communication between cooperating capsules. The intercon-
nection is built on compatible ports of the capsules.

In UML 2 it specifies a link that allows the communication between two or more
instance of connectable elements.

Thus their semantics is similar except for the level of abstraction at which they can
be used. In UML-RT a connector refers to the implementation level while in UML 2 it
can refer to both implementation level or any more abstract level.

UML-RT Class - UML 2 Class. UML-RT Class describes at design time one or more
distinct objects that have the same structure, attributes, operations and behaviour. At
run time a number of instances of classes cooperate for a common goal.

The Class has received in UML 2 several important changes. It has maintained the
properties that had in UML 1.x and has been enriched with additional ones. In fact
Classes represent sets of objects that share the same characteristics, constraints and
semantics. In addition new properties like nesting of classes and owning of ports have
been added.

In this way, the translation has been quite simple thanks to the invariant semantics
and also to the new ability of the classifier.

5.2 Two Example Prototypes: Round-Robin CPU and Main Dispatcher

In order to describe the implementation of PAlib in UML 2, we illustrate here the repre-
sentation in UML 2 of two prototypes, i.e. a CPU prototype and a dispatcher prototype.

Fig. 2. UML-RT Capsule and Statechart of a Round-Robin CPU in RRT

MOSES: MOdeling Software and platform architEcture in UML 2 97

Figure 2 shows the UML-RT implementation of a Round Robin CPU resource proto-
type, which includes the Capsule and the associated Statechart. As described in Section
3 the Round Robin CPU is a local resource, thus it is located in the bottommost layer
of the resource side, and (behaving exactly like a local resource) satisfies the software
requests of resources as described in the following. It leaves the idle state when the first
job enters the resource. At this point two events may occur while being in the busy state.
If a new job request enters the resource, then it is simply queued. If the CPU quantum
expires for the currently processed job, then two alternatives are possible: (i) if the job
has been fully processed, either the next job is extracted from the queue (if any) or the
CPU goes back to an idle state, (ii) if the job still needs processing time, it is queued
again and the next job is extracted from the queue and processed.

Figure 3 shows the same resource as implemented in UML 2 using an Active Class
associated with the related Statechart. It has the same states and transitions as the UML-
RT one, the UML-RT choice points correspond to the UML 2 decisional nodes, and
guards and triggers names are differently represented in UML 2. We can note a dif-
ference in the UML 2 model in that two transitions and one action are not actually
added since they are auxiliary for counters and probes computation. In UML-RT they
are hidden in the code whereas in UML 2 they are only made explicit.

Figure 4 shows the UML-RT Capsule and the Statechart of a Main Dispatcher. As
described in the section 3 the Main Dispatcher is located in the uppermost layer of the
resource side. It dispatches the resource requests and provides a single access point to

Fig. 3. UML 2 Active Class and Statechart of a Round-Robin CPU in TAU G2

98 V. Cortellessa et al.

Fig. 4. UML-RT Capsule and Statechart of a Main Dispatcher in RRT

send resource request messages from software side to a specific processing node. It sat-
isfies software requests of resources as described in the following. From an initial Idle
state it migrates to the Dispatching state upon the arrival of the first resource request.
It remains in this state until the Simulation Timeout expires (i.e., a message from the
simulation control is received). This event triggers the transition to the File Logging
state, where all the simulation statistics are collected and sent out as simulation results.

Figure 5 shows the UML 2 Active Class and Statechart of the Main Dispatcher. It
has the same states and transitions as the UML-RT one, and guards and triggers names
are differently represented in UML 2. We can note differences in the endTimer labeled
transitions in the UML 2 model. One corresponds to the transition labeled Simulation-
Timeout in UML-RT, whereas the other one has only been made explicit in UML 2.

5.3 Validation of the UML 2 Implementation

Once MOSES (UML 2 implementation of the PAlib) has been completed we have per-
formed an experimental validation. The strategy we have adopted has been to replay
one of the case study already implemented in UML-RT.This one allows us to clearly
highlight incidental discrepancies in performance indices computation with respect to
the real system test results is the one presented in [10]. The example focused on one
of the system tests executed to verify the equipment compliance to a non-functional re-
quirement related to the amount of the CPU load induced by the routing activity related
to the traffic over a Telecommunication Management Network (TMN).

MOSES: MOdeling Software and platform architEcture in UML 2 99

Fig. 5. UML 2 Active Class and Statechart of a Main Dispatcher in TAU G2

In more detail the case study is in the domain of an SDH telecommunication system
in which there was a set of transmission nodes called Network Elements (NE), super-
vised by Element and Network Managers (EM, NM) for OAM&P (i.e. Operation, Ad-
ministration, Maintenance and Provisioning) activity. Connections between NM, EM
and NEs defined the Telecommunication Management Network (TMN) partially over-
laid by the SDH network; i.e. NM, EM and closest NEs can be directly connected by
Ethernet links, whereas farthest NEs can be connected by free SDH overhead band-
width using the Data Communication Channel (DCC) bytes. In the example in figure 1
we have four EMs - Em1, Em2, Em3, Em4 that are instances of the Em prototype -
which supervise four NEs (not represented in figure).

The NEs applicative software is split in two main components: (i) the Synchronous
Equipment Management Function (SEMF) and (ii) the Message Communication Func-
tion (MCF) that acts as a router between the messages flowing through TNM and SEMF.
In figure 1 we can see the instance of the Emf prototype which represents a single MCF
that routes all the resource requests coming from the EMs residing in the software side.
As explained in section 3, in the resource side there are three layers. In the example
the uppermost contains the instance of the MainDispatcher prototype, the middle layer
contains the instance of the CpuInternalDispatcher prototype, and the bottommost con-
tains the instance of the local resource prototype that is the RoundRobinCpu. All these
components behave as explained in section 3.

In both cases - the simulation and the real test - the Ems solicit the DCC channels
that connect them with the Emf component by means of pings. This is done, during

100 V. Cortellessa et al.

the experimentations, dimensioning both the ping packets with different sizes, and the
bandwidth with different occupancies.

The test focuses on the CPU performance related to the ISO/OSI protocol stack
processing and ignores the application processing. The results of the simulation have
been compared with the values obtained by the ”MC Test”, that is a test case to validate
the equipment with respect to a specific system requirement asking for a CPU load
less then 50% due to DCC traffic. Table 3 shows the results obtained by the system
verification tests and the two sets of simulation results obtained with the UML-RT and
UML 2 PAlib implementation. The table represents the percentage of the CPU load
obtained stimulating the system with a ping generator able to generate different traffic
rates. The results highlight that the TAU G2 simulation environment is more accurate
and provides results that better reflect the model linearity. However, the comparison of
these results has brought a proof of concept in support to the correctness of the UML 2
implementation.

Table 3. Simulation and test results

PING (pps) 25 50 75 100 105

MC TEST (%CPU) 11.56 22.68 33.72 43.86 46.18
Estimated UML-RT (%CPU) 10.9 21.9 32.8 43.8 46

Estimated UML 2 (%CPU) 11 22 33 44 46.2
∆ %CPU MC TEST vs UML-RT 0.9 0.78 0.92 0.06 0.18

∆ %CPU MC TEST vs UML 2 0.56 0.68 0.72 - 0.14 - 0.02

6 Conclusions

The work presented in this paper concerns our experience in developing a concrete
framework in UML 2 on the basis of an existing architectural performance validation
methodology.

From a notational viewpoint, we have compared the UML 2 framework implemen-
tation with the previous one based on UML-RT. In addition, with the support of the Tau
G2 tool, we have also compared the results obtained by simulating a case study with the
two UML implementations and the values obtained by a real test. This first experience
not only has demonstrated at a certain extent the correctness of the implementations,
but it has also shown that the available tools that support UML 2 modeling have larger
benefits than the ones adopted to support UML 1.x.

Performance analysis can be carried out at different levels of abstraction and ac-
curacy. In the presented methodology - and thus in the UML-RT and UML 2 imple-
mentations - the level of abstraction is not pre-determinated and is left to the designer.
It depends on the modeled system and on what one intends to represent and observe.
Besides, specific elements of our implementations is somehow related to the level of
abstraction. With respect to the level of accuracy, in the presented methodology this is
ruled by the accuracy of the simulation engine. After all, for sake of our methodology
implementation, the only two major requirements for tools to be adopted have been: (i)
the power of the simulation engine, (ii) the capability of annotating dynamic models
with resource requests.

MOSES: MOdeling Software and platform architEcture in UML 2 101

The separate modeling of software architectures and platform architectures is an in-
teresting topic for modern software systems, where many attributes depend on the run-
ning platform, but where (at the same time) it is necessary to keep Platform Independent
Models as a separate representation with respect to the Platform Specific Model. We in-
tend to consolidate our approach in this direction, for example by extending the library
of resources prototypes, in order to make easier the modeling of software and platform
architectures in new application domains.

From a technical viewpoint, we plan to migrate the necessary annotations of MOSES
from the UML SPT profile to the new MARTE profile which has been designed for the
UML 2 metamodel. Besides, due to the wide diffusion of SysML-based approaches
to design integrated software/platform models, we plan to study pros and cons of our
approach with respect to SysML.

Finally, we plan to study the portability of MOSES over other simulation-based UML
2 tools, as well as experimenting the approach on large real world case studies to ob-
serve its scalability.

Acknowledgments

Authors would like to thank the reviewers for their excellent comments that have helped
to improve the paper quality.

This work was partially supported by the European Community via the 6th FP IST
PLASTIC project.

References

1. ARTISAN Sofware - ARTISAN Studio, http://www.artisansw.com
2. IBM Rational Rose Real Time,

http://www-306.ibm.com/software/rational/
3. Telelogic TAU G2, http://www.telelogic.com
4. UML 2.0 Superstructure Specification, OMG document formal/05-07-04, Object Manage-

ment Group, Inc. (2005),
http://www.omg.org/cgi-bin/doc?formal/05-07-04

5. UML profile for schedulability, performance, and time specification. formal/03-09-
01, omg adopted specification, http://www.omg.org/technology/documents/
formal/schedulability.htm

6. Arief, L.B., Speirs, N.A.: A UML tool for an automatic generation of simulation pro-
grams. In: Proceedings of the Second International Workshop on Software and Performance
(WOSP2000), Ottawa, Canada, pp. 71–76. ACM, New York (2000)

7. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: A survey. IEEE Transactions on Software Engineering 30(5), 295–
310 (2004)

8. Balsamo, S., Marzolla, M.: A simulation-based approach to software performance modeling.
In: Proc. of European Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering (2003)

9. Cortellessa, V., Gentile, M.: Performance modeling and validation of a software system in
a RT-UML-based simulative environment. In: International Symposium on Object-oriented
Real-time distributed Computing, pp. 52–59 (2004)

http://www.artisansw.com
http://www-306.ibm.com/software/rational/
http://www.telelogic.com
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/technology/documents/formal/schedulability.htm
http://www.omg.org/technology/documents/formal/schedulability.htm

102 V. Cortellessa et al.

10. Cortellessa, V., Pierini, P., Rossi, D.: On the adequacy of UML-RTfor performance validation
of an sdh telecommunication system. In: ISORC, pp. 121–124. IEEE Computer Society, Los
Alamitos (2005)

11. Cortellessa, V., Pierini, P., Rossi, D.: Integrating software models and platform models for
performance analysis. IEEE Trans. Softw. Eng. 33(6), 385–401 (2007)

12. de Wet, N., Kritzinger, P.: Using UML models for the performance analysis of network sys-
tems. Comput. Networks 49(5), 627–642 (2005)

13. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach. J. Syst.
Softw. 80(4), 528–558 (2007)

14. Isabel, D., Volker, S., Falko, D., Reinhard, G.: SYNTONY: Network Protocol Simulation
based on Standardconform UML 2 Models. In: 1st ACM International Workshop on Network
Simulation Tools (NSTools 2007), Nantes, France. ACM, New York (October 2007)

15. Kabajunga, C., Pooley, R.: Simulating UML sequence diagrams. In: Pooley, R., Thomas, N.
(eds.) UK Performance Engineering Workshop (UK PEW), pp. 198–207 (July 1998)

16. Kirshin, A., Dotan, D., Hartman, A.: A UML simulator based on a generic model execution
engine. In: Lecture Notes in Computer Science - Models in Software Engineering, pp. 324–
326 (2007)

17. Ober, I., Graf, S., Ober, I.: Validating timed UML models by simulation and verification.
STTT, Int. Journal on Software Tools for Technology Transfer 2005 (under press, 2004)

18. Petriu, D., Woodside, M.: An intermediate metamodel with scenarios and resources
for generating performance models from uml designs. Software and Systems Modeling
(SoSyM) 6(22), 163–184 (2007)

19. Koziolek, H., Happe, J., Kuperberg, M., Reussner, R.H., Becker, S., Krogmann, K.: The
palladio component model. In: Universität Karlsruhe (TH), Interner Bericht 2007-21 (2007)

20. Rolia, J.A., Sevcik, K.C.: The method of layers. IEEE Transactions on Software Engineer-
ing 21(8), 689–700 (1995)

21. Koziolek, H., Becker, S., Reussner, R.H.: Model-based performance prediction with the pal-
ladio component model. In: Proc. Workshop on Software and Performance (WOSP2007)
(February 2007)

22. Sancho, P.P., Juiz, C., Pugjaner, R.: Integrating system performance engineering into MAS-
COT methodology through discrete-event simulation. In: Núñez, M., Maamar, Z., Pelayo,
F.L., Pousttchi, K., Rubio, F. (eds.) FORTE 2004. LNCS, vol. 3236. pp. 278–292. Springer,
Heidelberg (2004)

23. Selic, B.: Using UML for modeling complex real-time systems. In: Müller, F., Bestavros, A.
(eds.) LCTES 1998. LNCS, vol. 1474, pp. 250–260. Springer, Heidelberg (1998)

24. Selic, B.: On software platforms, their modeling with UML 2, and platform-independent de-
sign. In: ISORC 2005: Proceedings of the Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2005), Washington, DC, USA, pp. 15–
21. IEEE Computer Society, Los Alamitos (2005)

25. Woodside, M., Hrischuk, C., Selic, B., Bayarov, S.: A wideband approach to integrating
performance prediction into a software design environment. In: WOSP 1998: Proceedings of
the 1st international workshop on Software and performance, pp. 31–41. ACM, New York
(1998)

26. Woodside, M., Hrishchuk, C., Selic, B., Bayarov, S.: Automated performance modeling of
softwaree genrated by a design environment. Perform. Eval. 45(2-3), 107–123 (2001)

27. Yacoub, S., Ibrahim, A., Ammar, H.H., Lateef, K.: Verification of UML dynamic specifi-
cation using simulation-based timing analysis. In: Proc. of 6th International Conference on
Reliability and Quality in Design (ISSAT 2000), pp. 65–69 (August 2000)

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 103–118, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Designing the Enterprise Architecture Function

Bas van der Raadt1 and Hans van Vliet2

1 Capgemini, Global Financial Services / Architecture & Governance Improvement,
Papendorpseweg 100, 3528 BJ Utrecht, The Netherlands

bas.vander.raadt@capgemini.com
2 VU University, Department of Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
hans@cs.vu.nl

Abstract. Enterprise Architecture (EA) is becoming an increasingly mature
field of work, but many large organizations still struggle with implementing an
integral and truly effective EA function. The literature provides a fragmented
picture of the EA function, describing the various separate elements that make
up the total package of activities, resources, skills, and competences of the EA
delivery function. In our view, the EA function reaches beyond EA delivery and
also includes the stakeholders, structures and processes involved with EA
decision making and EA conformance. A holistic and integral view on the EA
function is essential in order to properly assess an EA function on its
performance, and to allow identifying the key points of improvement. In this
article, we give such a description of the EA function, which provides the
reference model in EA function performance assessments as part of our
Normalized Architecture Organization Maturity Index (NAOMI) approach.

Keywords: Enterprise Architecture, Management, Organizational, Function,
Reference Model, Governance, Conformance.

1 Introduction

The dream of every CEO is to have one standardized, integrated, flexible and
manageable landscape of aligned business and IT processes, systems and procedures.
Having complete control over all projects implementing changes in that landscape
so that they deliver solutions that perfectly fit the corporate and IT change strategies,
makes this dream complete. The reality for many large organizations is quite
the opposite. Many large organizations struggle to keep their operational and change
costs in control. Key reasons are the inflexibility and enormous complexity of
their business and IT structures, processes, systems, and procedures, often distributed
across lines of business (LoB) and business divisions (BD) spread out over various
regions, countries or even continents [1], [2]. Over the last decade, Enterprise
Architecture (EA) has been one of many instruments used by organizations in their
attempt to get grip on the current operational environment and the implementation
of changes. EA provides standardization, and sets a clear direction for the future
to guide changes. Compared with architecture in the physical world, EA provides the

104 B. van der Raadt and H. van Vliet

mechanism for city planning where software architecture is the architecture of one
building. EA thus gives boundaries within which a software architect has to operate.
Effectively applying EA leads to a reduction in operational maintenance costs due to
increased discipline and control, as well as increased responsiveness because EA
leads to reduced project duration. Additionally, EA improves risk management as it
leads to reduced complexity, and it increases management satisfaction, because it
provides an enterprise-wide view on organizational changes [3]. Finally, EA enhances
strategic business outcomes because it helps increasing the effectiveness of business
processes, applications, data and infrastructure through standardization [4].

Although seen as a vital management instrument by many large organizations
[2], EA has generally not reached the desired result. EA has been practiced for at
least ten years now, but it still suffers from relative immaturity, as we have
experienced in various assessments of EA functions at client organizations (e.g., see
[5] and Section 3). They have difficulties establishing an EA function that is fully
integrated into the existing corporate or IT governance, as well as stimulating
effective collaboration between architects and other stakeholders. Such a
fragmented and badly integrated EA function typically fails to fulfill the
expectations of all EA stakeholders which leads to the goals set with EA – if
explicitly set at all – not being achieved.

In EA research, much effort has been put into various separate elements that make
up the total package of activities, resources, skills, and competences that a mature EA
delivery function should have in place – e.g., proper tools [6], frameworks [7]; [8] and
architects [9]. In order to measure an organization’s EA capability maturity, various
EA function performance assessments (e.g., [5]; [10]; [11]) have been developed.
These primarily focus on assessing whether the elements that determine the maturity
of the EA delivery function (e.g. an architecture department or team) are in place.
However, based on our experience, this is a limited view. The activities of the EA
function should reach beyond merely delivering EA products and should also include
other organizational roles, bodies, and activities responsible for EA decision making
(e.g. an architecture council) and EA conformance (e.g. project managers and
designers). An organization will only be effective with Enterprise Architecture when
there is effective formal and informal interplay between the members of the EA
delivery function and the stakeholders responsible for EA decision making and EA
conformance. Moreover, the entire EA function must be properly integrated into the
overall organizational and governance structures in order to be effective.

Currently, the literature lacks a complete reference model of an EA function.
Existing EA capability maturity assessment approaches (e.g., [10]; [11]) have
incorporated a reference model into their maturity model, but this model is often
limited to the EA delivery function. Other practitioner’s literature (e.g., [7]; [11])
provides a fragmented view of elements of the EA function. In this paper we provide
a clear definition and integral description of the EA function, established into our EA
function reference model. This model describes the norm we compare client
organizations to, while assessing their EA function’s performance. Both the EA
function reference model and assessment model are part of our Normalized
Architecture Organization Maturity Index (NAOMI) approach [5].

Section 2 of this paper contains our reference model of the EA function. Section 3
contains a case study that shows how one company has implemented its EA function.

 Designing the Enterprise Architecture Function 105

In Section 4 we discuss the lessons learned regarding our EA function reference model
based on this case study. Finally, in Section 5 we draw our conclusions and discuss
future research we will conduct on the topic of the Enterprise Architecture function.

2 Reference Model

Based on scientific and practitioner’s literature, and various case studies at a Global
Financial Services Companies (e.g. [5]), we have created an integral description of the
EA function. We define the EA function as: The organizational functions, roles and
bodies involved with creating, maintaining, ratifying, enforcing, and observing
Enterprise Architecture decision-making – established in the enterprise architecture
and EA policy – interacting through formal (governance) and informal
(collaboration) processes at enterprise, domain, project, and operational levels.

Based on this definition, we describe our EA function reference model with
Section 2.1 describing its structure, Section 2.2 its products, Section 2.4 its process
model, and Section 2.5 the bodies and roles involved. Section 2.3 provides a detailed
description of EA delivery as part of the entire EA function.

2.1 Structure of the EA Function

Figure 1 shows the three main responsibilities of the EA function: (1) EA decision
making, (2) EA delivery, and (3) EA conformance (see Fig. 1). EA decision making at
strategic and tactical level is responsible for approving new EA products or changes
in existing EA products, and for handling escalations regarding EA conformance.
This is typically performed by one or more governance bodies (e.g. an EA council).
Having such governance bodies in place – with proper representation from various
stakeholder groups (see Section 2.5.1) – results in better perceived importance,
involvement and support of both management and other stakeholders, and it improves
effectiveness of the EA function [1]. EA governance bodies vary in the degree to
which they have an advisory or formal decision making authority [12].

EA delivery is responsible for providing advice to guide EA decision making at
strategic and tactical level. Additionally, EA delivery creates and maintains EA
products, validates change results to see whether they conform to the EA, as well as
provides support in applying EA products (see Section 2.3).

EA decision making

EA delivery

EA conformance

Provide advice to
support EA decision making

Create & maintain
EA products

Validate EA conformance &
handle waiver requests

Provide support in
applying EA products

Ratify EA products Handle EA escalations

Provide feedback
on EA products

Escalate EA
exceptions

Conform to
EA products

Fig. 1. Responsibilities of the three main Enterprise Architecture functions

106 B. van der Raadt and H. van Vliet

Finally, EA conformance is responsible for implementing organizational changes
through solutions as described in the target architectures, complying with the EA
policy, and providing feedback on the applicability of the EA products to the EA
delivery function. EA conformance is typically the responsibility of members of the
organization who are affected by the EA products [13] while running change projects
(e.g. project managers) or implementing operational changes (e.g. operational
maintenance) at tactical and operational level.

2.2 Products of the EA Function

There are generally two types of EA products: (1) architectures and (2) EA policies
[14]. An architecture document provides an abstraction of what a complex
environment looks like, and acts as a means of communication and decision making
regarding that environment [2]. Three types of architecture documents exist: (1) target
state (to-be, soll) architecture that provides an abstraction of the desired situation, (2)
current state (as-is, ist) architecture that describes the current operational
environment, and (3) roadmap that describes a realization path from the current state
to the target situation. These types of architecture documents aim at one or more of
four aspect areas: (1) business architecture, (2) information architecture, (3)
information systems, and (4) technical infrastructure [8]. The first two dimensions
represent the business aspects of an organization; the latter two represent the IT
aspects. In our view, Enterprise Architecture comprises both the business and IT
aspects of an organization, and the alignment between them [2].

EA policy prescribes how projects should implement organizational changes across
various LoBs and BDs through unified principles and practices. EA policies may be
specified in three possible forms: (1) standards, (2) rules, or (3) guidelines. Both a
standard and a rule must be adhered to; a guideline may be deviated from, provided a
waiver has been granted. Enforcing EA policy enables organizations to influence the
change activities of subunits without dictating exactly how they handle all of their
operational activities [1]. Keeping up-to-date with industry standards allows organiza-
tions to change in a predictable way as a response to external developments [4], such
as market changes, technological innovations and regulatory changes.

2.3 EA Delivery Function

The EA delivery function is often organized as a separate department [15] or team [1],
typically as an organizational staff function. Depending on the size of the
organization, the EA function may also consist of one or more individually operating
architects. The EA department or team is sometimes led by a chief architect [1]. The
origin of the EA function may differ, resulting in a difference in focus on either
business aspects or IT aspects [2]. Regardless of the focus, there are generally four
types of responsibilities of EA delivery:

1) Provide advice to support EA decision making regarding the target architecture by:

• Helping in building a vision and strategy for the future, based on its relation
with its external environment regarding social, environmental and market
developments, technological innovations, regulatory changes, etc.

 Designing the Enterprise Architecture Function 107

• Describing decision alternatives regarding the target situation [16], and performing
an impact analysis on predefined evaluation criteria and indicators (e.g. financial,
regulatory) to determine the consequences of those alternatives in order for
management to select the most desirable one [17]

2) Create and Maintain EA products that describe the:
• Current state architecture, which provides insight in the as-is situation of the

operational environment, together with its bottlenecks and accompanying risks
• Concrete target state architecture, based on the vision and strategy, describing

the chosen decision alternative in detail, which is assessed on its ability to cope
with possible internal and external changes using various future scenarios

• Roadmap from the current state to the target situation, in which the mutual
relation and impact of the elements in the architecture is described, and the
sequence of implementation steps is given

• EA policies based on up-to-date knowledge of industry standards and
developments within the organization, and determine their potential impact [4]

3) Validate EA conformance by:
• Reviewing programs or projects on their compliance with the applicable:

− Target architectures at enterprise and domain levels, to ensure that individual
program and project results contribute to achieving the general business goals
and the target situation described in those target architectures

− EA policies, to ensure that change activities of programs or projects
contribute to achieving the standardization and integration goals set with EA

− Current state architectures, ensuring the operational readiness of the program
and project results before deployment, thus safeguarding the continuity of the
operational processes and systems

• Handling waiver requests, assessing the implications of allowing programs and
projects that file the requests to deviate from a specific guideline

4) Provide support in applying EA products towards programs and projects (e.g.
through training and coaching) in:

• Creating program and project target architectures based on the EA products at
domain and enterprise levels

• Conforming to the EA products in running programs and projects

2.4 EA Process Model

Pulkkinen [18] describes an EA process model for the management of architectural
decisions in enterprise architecture planning that has three abstraction layers: (1)
enterprise level, (2) domain level, and (3) systems level. Decisions made at higher
management levels are made explicit in EA products that flow downwards to lower
levels, introducing more detail. The architectures and EA policies at a higher level set
the boundaries for decision making and implementation at lower levels. From our
practical experience with implementing EA functions, this has proven to be an
appropriate model. However, based on our practical experience and an exploratory
study on the stakeholder’s perception of EA performance [19], we altered and
extended the EA process model.

108 B. van der Raadt and H. van Vliet

The EA process model makes a distinction between permanent (e.g., business
process chains, BDs, or LoBs) and non-permanent (e.g., large programs) domains.
However, it is also vital to make a distinction between specific and generic business
domains because of their conflicting operating models as a result of different
optimization principles. A specific domain typically entails a customer facing LoB,
which provides a specific product or service, servicing a specific market or client
segment, or operating within a defined geographical region. It therefore optimizes its
operating model in order to fine tune its services to the needs of its customers [20].
On the other hand, a generic business domain (e.g., a shared service center) typically
offers generic or infrastructural services to various LoBs and BDs within an
organization – thus acting as a cost center – optimizing its structures, processes,
systems and procedures so it can minimize its operational costs [21]. In order to best
deal with the horizontal integration of specific and generic domains, EA decision
making may be centralized, decentralized or implemented in a federal model,
depending on the organizational characteristics [12].

We changed the name of ‘systems level’ into ‘project level’. This leaves open what
type of solutions projects deliver. The term ‘systems level’ suggests that EA decision
making and implementation always results into an IT solution [18]. However, within
the business and information architecture aspect areas [8], projects may deliver case
handling processes that require human involvement and physical information flows
(through paper forms); it is not always possible to fully automate business processes
into Straight Trough Processing (STP) [22].

Also, we added an operational level to the process model, because of the conflict in
decision making regarding organizational changes at project level, and organizational
stability and continuity at operational level [23]. Decision making about exploiting a
continuous and repeating operational environment aims at refinement, through
predictable small impact changes, to maximize its continuity and stability. Decision
making at project level often is different in nature, because it concerns realizing less
predictable high impact changes in the operational situation, potentially compromising
the continuity and stability at operational level.

Enterprise-wide decision making – as is the case with EA – should encompass
feedback from group and individual levels to ensure continuous improvement [24].
However, in practice such a feedback process is hardly performed. EA decision
makers (e.g. senior management) feel that a one yearly decision making cycle is
adequate in managing changes [25]. The EA process model incorporates a learning
cycle with a downstream flow of decisions (feed-forward), and an upstream flow to
feed the successes and constraints of implementing those decisions at lower levels
back to higher levels (feedback) [18]. We elaborate on these concepts using the
organizational learning framework of Crossan et al. [24]. We translated the four
underpinning key premises of their framework to the situation of EA to enhance the
EA process model (see Table 1).

In parallel with the organizational learning theory, the Enterprise architecture
practice experiences a tension between exploration of new possibilities and
exploitation of old certainties [26]. EA exploration takes place during decision
making at enterprise and domain levels, and results in new architectures and EA

 Designing the Enterprise Architecture Function 109

Table 1. The Organizational Learning premises taken from Crossan et al. [24] specified to the
Enterprise Architecture construct space.

Premise Organizational Learning (OL) Enterprise Architecture (EA)
1 OL involves a tension between

assimilating new learning
(exploration) and using what has been
learned (exploitation).

EA involves a tension between creating new EA
products through exploration and exploiting the
existing EA products that describe the
operational structures, systems and processes,
and prescribe the current standards and
procedures.

2 OL is multi-level: individual, group,
and organization.

EA is multi-level: enterprise, domain, project,
and operational.

3 The three levels of OL are linked by
social and psychological processes:
intuiting, interpreting, integrating, and
institutionalizing.

The four levels of EA are linked by formal
(governance) and informal (collaboration)
processes.

4 Cognition affects action, and vice
versa.

Theory (architectures and standards) affects
practice (change projects and operational
structures, processes and systems), and vice
versa.

policies being created and approved. Following, these EA products, describing how
changes should be implemented, are fed forward to project and operational level,
where these are to be interpreted and followed. The EA delivery function plays a vital
role, as mediator between EA decision making and EA conformance, in getting this
shared understanding and common behavior. It requires a more pro-active attitude
than merely writing down the central decisions and publishing them so that they are
available to lower levels. Having an integrated and effective roll out and acceptance
plan is vital for the EA delivery function to realize this organizational change [27].

Feedback is vital in respecting the constraints and problems that arise at project or
operational level with applying the EA products prescribed. These may not have been
anticipated during EA decision making at domain or enterprise level. Informal
feedback during the collaboration between architects and EA stakeholders at lower
levels allows continuous improvement of EA products through refinement of EA
decisions at higher levels. This ensures their practical applicability and prevents them
from being exclusively used by architects [2]. Formal feedback through escalation of
EA conformance exceptions and waiver requests also provides vital information for
improving the EA products; the number of escalations and waiver requests regarding
a specific EA products acts as a quality indicator of that product.

Also, feedback allows incorporating what has been learned at lower levels, through
exploration, experimentation and innovation, into EA products prescribed at higher
levels. Best practices (e.g., a proof-of-concept of a new, innovative technology) at
project or operational level are identified and evaluated on their generic applicability
[18]. This leads to a proposal for changes in existing, or the creation of new, EA
products. When ratified, an EA product receives the formal status ‘approved’, and
will go through the validity statuses: future, actual, confined and obsolete, before
receiving the formal status ‘retired’, introducing an EA product life cycle.

110 B. van der Raadt and H. van Vliet

F
eed

b
ack

Enterprise

Domain

Project

Operational

Enterprise Domain Project Operational

Feed-forward

Formal

Informal

Fig. 2. EA Process Model including a learning cycle of feed-forward and feedback across
enterprise, domain, project and operational levels

Figure 2 shows the EA learning cycle constructed of formal and informal EA
processes at various organization levels. Table 2 describes the in and output regarding
the feed-forward and feedback of these formal and informal processes.

2.5 Bodies and Roles within the EA Function

Within the process model of the EA function described in Section 2.4, various bodies
and roles interact while pursuing different objectives and goals.

2.5.1 Bodies and Roles within EA Decision Making
The EA governance bodies within the EA function are responsible for decision
making about EA products, giving them a formal status. Also, it handles escalations
of non-conformity. An effective EA governance body at any organizational level
should: (1) be composed of the various roles that represent the potentially conflicting
interests that occur at that organizational level, (2) perform transparent decision
making based on objective criteria, and (3) have the proper mandate to enforce the
decisions at that organizational level.

The EA council at enterprise level acts as a steering committee [1] in order to
achieve horizontal integration for coordinating of EA decision making [12]. It is
comprised of representatives of the domains within the organization, the chief
architect, and a chairman. Both the chairman – a key EA sponsor – and the chief
architect – responsible for the quality and effectiveness of the overall Enterprise
Architecture – should act in the interest of the enterprise-wide structures, processes,
systems and procedures to achieve the corporate strategy. The domain owners are
concerned with optimizing their specific domains to achieve their domain specific
strategies. When issues cannot be resolved within the EA council, they are escalated
towards senior management sponsoring the EA council for final decision making.

 Designing the Enterprise Architecture Function 111

Table 2. EA functions and activities performed at enterprise, domain, project and operational
levels; at each level input and output is fed forward or back, creating the EA learning cycle

Organizational
level

Functions &
activities

Formal processes Informal processes

Enterprise EA decision making

EA delivery

Feed-forward:
• (Out) Validate domain

level EA conformance

Feedback:
• (In) Handle domain level

EA escalations and
waiver requests

Feed-forward:
• (Out) Provide support in

applying EA products at
domain level

Feedback:
• (In) Use feedback to

maintain enterprise level
EA products

• (In) Use operational expert
knowledge and data in EA
decision making

Domain EA decision making

EA delivery

EA conformance

Feed-forward:
• (In) Conform to

enterprise level EA
products

• (Out) Validate project
and operational level EA
conformance

Feedback:
• (In) Handle project and

operational level EA
escalations and waiver
requests

• (Out) Escalate domain
level EA exceptions, and
file waiver requests
towards enterprise level

Feed-forward:
• (In) Utilize support in

applying EA products
• (Out) Provide support in

applying EA products at
project and operational
level

Feedback:
• (In) Use feedback to

maintain domain level EA
products

• (In) Use operational expert
knowledge and data in EA
decision making

• (Out) Provide feedback on
existing or potentially new
EA products

Project EA conformance Feed-forward:
• (In) Conform to domain

level EA products

Feedback:
• (Out) Escalate project

level EA exceptions, and
file waiver requests

Feed-forward:
• (In) Utilize support in

applying EA products
• (Out) Provide support in

deploying the project result

Feedback:
• (In) Use operational expert

knowledge to run project
• (Out) Provide feedback on

existing or potentially new
EA products

Operational EA conformance Feed-forward:
• (In) Conform to domain

level EA products

Feedback:
• (Out) Escalate

operational level EA
exceptions, and file
waiver requests

Feed-forward:
• (In) Utilize support in

deploying the project result

Feedback:
• (Out) Provide operational

expert knowledge and data

112 B. van der Raadt and H. van Vliet

At domain level, there may be a formal authority or informal advisory EA
governance body (e.g., domain architecture council), which is responsible for EA
decision making within that domain. Membership is similar to the EA council, only
the roles stay within the domain. The domain architecture council handles the
ratification of domain specific EA products and handles the escalations regarding
non-conformity with those EA products. Only when disputes regarding non-
conformity cannot be resolved within the domain architecture council, or the impact
of decisions made by the domain architecture council reaches beyond that domain, is
that issue escalated towards the EA council at enterprise level. This reduces the
workload for the EA council to only the hard-to-resolve, domain overarching issues.

At project level there is typically no formal EA governance body. The project
steering committee may act as an informal EA governance body. Issues of non-
conformity that cannot be resolved and may lead to a project deviating from the
enforced EA products will be escalated towards the domain architecture council.

2.5.2 Roles within EA Delivery
At enterprise level, the EA delivery function usually consists of a central EA team [1]
or staff department [11], comprised of an EA manager, the chief enterprise architect,
and various enterprise architect roles. Each enterprise architect is responsible for a
specific EA aspect area (i.e. business, information, information system, or technical
infrastructure [8]), performing the primary activities of the EA delivery function (see
Section 2.1) at enterprise level. The chief enterprise architect [1] typically acts as the
functional lead of the EA delivery function, overseeing all aspect areas of the
enterprise architecture. He or she acts as trusted advisor to the CxO, and is
responsible for the quality and effectiveness of the overall Enterprise Architecture.
The EA manager runs the EA delivery function, performing budget and resource
management, planning and coordination, and other operational management tasks.

Organizational domains (e.g., LoBs) typically employ their own specific architects
at domain level, who are experts in a specific business or IT area. The domain
architect acts as trusted advisors to the domain owner (e.g. head of the LoB).
Depending on the size and structure of the domain level EA delivery function,
autonomously operating architects, a team of architect-like roles, or a formal
architecture department may be present. This domain level EA delivery function acts
as a sub-team [1] of the central EA delivery function at enterprise level.

2.5.3 Roles within the EA Conformance
The members of a project team are responsible for managing and running change
projects. These projects should deliver solutions that transform specific parts of the
organization’s operational environment into the desired situation described in the
target architecture(s) at enterprise and domain levels. Additionally, they should
comply with EA policy while running the project. A special role is project architect,
who acts as an advisor guarding the quality of the project. He or she provides advice
in the start-up phase of a project to discuss the important implementation decisions,
and is responsible for the delivery of a project design which complies with the
enforced EA products. Also, the project architect should provide feedback on the
practical applicability of EA products towards the domain level EA delivery function.

 Designing the Enterprise Architecture Function 113

A project architect is not member of the EA delivery function. This role has project
result responsibility, and can therefore not perform project validations independently.

At operational level, the EA delivery function performs a gatekeeper role,
performing post implementation reviews of: (1) solutions projects deliver and (2),
changes made in the operational environment. In performing these reviews, changes
are assessed on operational readiness and EA conformance before being deployed.

3 EA Function at a Large International Company

We conducted a case study at a large international company, henceforth called
company A, assessing its EA function against our EA function reference model. We
held fully structured interviews with various roles – i.e., domain owners, EA council
members, program and project managers, operational managers, architecture
managers, architects, designers, subject matter experts – addressing the assessment
topics which are part of our NAOMI approach [5]. Also, the assessors studied an
extensive set of strategic, project, operational, and communication documents, in
order to check the findings from the interviews. With these findings we created an
image of the EA function, and compared these to the reference model described in
Section 2.

We have done a second case study of the EA function within a comparable
organization (company B) using the same approach. This case study had comparable
results. For confidentiality reasons, no details hereof can be given. In the case
description in this section, we indicate which findings we confirmed with the case
study conducted at company B, and which findings were different.

The case study we conducted involved the assessment of an EA function within the
operations and IT division of a large international company, with technical
infrastructure as the primary focus area. This back-office division consists of various
verticals providing operational and IS services to the various LoBs within the front-
office, as well as a technology department providing infrastructural services to the
verticals. The EA function, as part of the technology department, is responsible for
creating enterprise wide infrastructure policies and validating solution designs on
their conformance. The EA delivery function consists of a team of architects, each an
expert regarding a specific infrastructural domain (e.g., storage, mainframe, internet,
etc.), responsible for creating EA policy and performing conformance validations
related to that domain. When a solution touches several infrastructural domains, it had
to be validated by each domain architect responsible for those domains. The chief
infrastructure architect and the infrastructure domain architects held a monthly
meeting to approve new infrastructure policies. This was not a formal EA council
with representatives from the verticals responsible for EA decision making regarding
the infrastructural policies. The infrastructure policies did have impact for those
verticals. This monthly meeting resulted in few policies getting a formal status. There
was no standard procedure, for policies that received a formal status, to store and
publish them in one central repository.

Company B did have a formal EA council with proper representation from the
Business Divisions (BD) within the company. The EA council, however, was also

114 B. van der Raadt and H. van Vliet

unable to assess and approve EA policy proposals created by the EA delivery
function, and provide them with a formal status.

Our assessment of the EA function in company A showed that there was no
enterprise infrastructure architecture written down that describes the relations and
coherence between the infrastructure domains. This resulted in inconsistent and
incoherent EA policies across the infrastructure domains. The domain architects
provided conflicting advice to the project managers and designers, because they
collaborated insufficient with each other, and did not have a enterprise infrastructure
architecture to guide them. This made creating a coherent solution design that
complied with the EA policies complex for the designers, which frustrated them.
Many designers also had little experience with creating solution designs according to
the template provided by the EA function. Many solution designs sent to the EA
function for validation were therefore of low quality, and were either found
inadmissible or were rejected.

Company B did have an enterprise architecture that described the relations and
coherence between domains. However, this enterprise architecture wasn’t detailed
enough to provide a concrete reference for the domain architects. This resulted in
similar problems regarding conflicting architectures, policies, and advice by the EA
delivery function we found at company A.

The conflicts of opinions and insufficient collaboration between domain architects
at company A caused the validation outcome of solution design to be unpredictable;
the result depended on which architect performed the validation. All involved domain
architects had to accept the solution design in order for the project to receive a
building permit. Projects sometimes had to wait months in order for their design to be
accepted, because the domain architects could not agree on the outcome. The
feedback projects got on the rationale why a solution was rejected, and the
explanation on what to improve in their design in order to pass the validation
successfully was often insufficient.

In order to deviate from a policy, or request permission to continue implementing
the solution when the design was rejected by the EA function, project managers at
company A could request a waiver. Decision making about granting projects a waiver
was not transparent; they were granted based on undefined criteria, and inadequately
communicated to the stakeholders. Domain architects were not always informed about
a granted waiver. During the next solution validation they rejected the solution of a
project that were granted a waiver. This resulted in projects being stopped even
though a waiver was granted, to the frustration of various EA stakeholder groups.

Company B had a similar procedure for projects to request permission to deviate
from a EA policy. The EA council that handled these requests was not fully effective.

There were too many EA policies at company A. They were unstructured, and the
formal status of many of them was often unknown; there was no life cycle and change
management for the policies. The EA policies the domain architects created were
often not tested before they were implemented. Because there was no feedback loop
from project level upwards, the domain architects were not aware of the practical
applicability of the EA policies. There was no central administration of escalations
and waiver requests to allow identifying malfunctioning EA policies to be changed.
This all resulted in many projects deviating from the EA policies because they were
impossible to work with.

 Designing the Enterprise Architecture Function 115

The EA policies at company B were also not tested before they were implemented,
and there was no feedback loop from projects upwards. Company B did have a
central administration of escalation and waiver requests, but these were not used to
identify malfunctioning EA policies for improvement.

4 Lessons Learned

Section 3 describes only a fraction of the findings we collected during the EA
function assessment we conducted at the large international company A. However,
this case shows that the EA maturity level in this company requires quite some
improvement. It also shows it is insufficient to only take EA delivery into account to
be truly effective with EA; both EA decision making and EA conformance have to be
considered as well. In this section we elaborate on the key lessons we have learned.

1) Governance and collaboration must go hand in hand
The case study at company A shows that, if there are no formal and informal
structures and processes, it is hard for EA stakeholders to trust each other and to work
together. For example, an informal process of EA delivery performing an intake to
pro-actively explain projects that are starting up how to create a solution design that
satisfies the desired quality criteria, and conforms to the policies may help
considerably. This will result in project managers and designers to better understand
the purpose and working of solution validations, and deliver high quality designs.
However, formal processes are also required. For example, having a transparent
policy approval procedure, and a standard procedure for publishing the policies in a
central, well-structured repository. This would make it more clear for the EA
stakeholders, who are to conform with the policies, which EA policies apply to them.
Therefore, it is vital to have both formal and informal structures and processes in
place [28]. Formal processes ensure proper connection and coordination of EA
decision making and conformity. Informal processes stimulate collaboration. Only
combining both allows an effective implementation of EA governance in complex and
dynamic environments [12].

2) Don’t omit steps in the process model; keep the learning cycle in tact
A feedback loop is essential in getting EA products to be accepted and adhered to at
project level. For example, the case study at company A shows that EA policies were
not tested, and were not always applicable in practice. By ensuring a feedback loop
from projects to the domain architects will solve this issue. This feedback loop may
be implemented in the formal processes (i.e., make changes to policies based on
escalations and waivers), or informal processes (e.g., by having regular meetings
between architects who create the policies and designers who use them).

Having architectures at enterprise and domain level which are connected is vital in
getting horizontal integration across domains. For example, the case study at company
A shows that there was no enterprise infrastructure architecture available for the
domain architects in order to integrate the various infrastructural domains. This
illustrates that if one or more steps in the EA process model is omitted, the EA
learning cycle becomes incomplete, with negative results.

116 B. van der Raadt and H. van Vliet

3) Keep decision making and conformance reviews transparent and consistent
In order for the EA stakeholders to accept EA decision making and EA conformance
validation results, it is vital to be transparent and consistent [12]. For example, the
case study at company A shows that an unpredictable and unexplained validation
result leads to frustration with the project manager and designer. This frustration will
decrease with a transparent and consistent validation process, providing that proper
feedback is given to guide the validation outcome. Regarding EA decision making,
again transparency and consistency is essential. For example, the case study at
company A shows that EA stakeholders will become frustrated with impractical and
conflicting EA policies, and opaque EA decision making. In this case, transparent
decision making regarding policies by representatives of the verticals impacted by
those policies will increase the acceptance with the EA stakeholders within those
verticals.

4) Governance bodies must represent all EA stakeholder groups with conflicting
interests
An organization typically consists of various stakeholder groups at different
organizational levels that have conflicts of interest, resulting in power struggles and
political disputes [29]. For example, in the large international company we performed
our case study there was a conflict of interest between solution delivery centers within
the verticals delivering IT solutions, and the data center that deploys those IT
solutions. The solution delivery center is concerned with providing a solution that best
fits the business requirements; the data center wants to ensure the stability and
continuity of the data center. The composition of an EA governance body is vital in
properly addressing these conflicts of interest in decision making in order for EA
governance to be effective [12].

5 Conclusions

Up till now, the literature provided a fragmented description of the EA function. In
this article, we provide an integral description of the EA function in order to set the
norm in performing EA function performance assessments. The case study we discuss
in detail in this article shows that the maturity of EA functions is typically quite low,
resulting in low performance of those EA functions. A second case study – due to
reasons of confidentiality we do not describe this case study in detail in this article –
confirmed this. In order to properly identify the essential points of improvement and
compose an effective improvement plan, one needs a holistic perspective on the EA
function. Comparing a specific EA practice with our integral EA function reference
model, using an assessment model describing the standard topics of investigation,
allows for EA practices to be compared with each other. Our NAOMI approach
provides both an EA function reference, and assessment model. In this article we
describe our EA function reference model we use to design and implement EA
functions within organizations based on the assessment outcome.

In order to better understand what determines the performance of the EA function,
we are conducting an empirical study to validate our EA performance framework,
which addresses the three main topics of EA efficiency, EA effectiveness, and EA
stakeholder satisfaction. We conducted an exploratory study on EA stakeholder

 Designing the Enterprise Architecture Function 117

perception of EA function performance [19], and we are currently constructing a
stakeholder satisfaction assessment approach based on that exploratory study in order
to extend our NAOMI approach.

References

1. Boh, W., Yellin, D.: Using Enterprise Architecture Standards in Managing Information
Technology. Journal of Management Information Systems, 23(3), 163–207 (2007)

2. Van der Raadt, B., Soetendal, J., Perdeck, M., Van Vliet, H.: Polyphony in Architecture.
In: Proceedings 26th International Conference on Software Engineering (ICSE 2004), pp.
533–542. IEEE Computer Society, Los Alamitos (2004)

3. Ross, J.W., Weill, P., Robertson, D.C.: Enterprise Architecture as Strategy – Creating a
Foundation for Business Execution. Harvard Business School Press, Boston (2006)

4. Bird, G.B.: The business benefit of standards. StandardView 6(2), 76–80 (1998)
5. Van der Raadt, B., Slot, R., Van Vliet, H.: Experience Report: Assessing a Global

Financial Services Company on its Enterprise Architecture Effectiveness Using NAOMI.
In: Proceedings of the 40th Annual Hawaii international Conference on System Sciences
(HICSS 2007), p. 218b. IEEE Computer Society, Washington (2007)

6. Peyret, H., Leganza, G., Hoekendijk, C., King, O., McCormack, M., Carini, A.: Enterprise
Architecture Tools. In: The Forrester WaveTM, Q2, April 25 (2007)

7. Open Group.: TOGAF (The Open Group Architecture Framework) version 8.1.1 (’The
Book’) (2007),

 http://www.opengroup.org/bookstore/catalog/g063v.htm
8. Mulholland, A., Macaulay, A.L.: Architecture and the Integrated Architecture Framework.

Capgemini (2006),
 http://www.capgemini.com/services/soa/ent_architecture/iaf/

9. Clerc, V., Lago, P., Van Vliet, H.: The Architect’s Mindset. In: Overhage, S., Szyperski,
C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880. pp. 231–249.
Springer, Heidelberg (2008)

10. META Group, Inc.: Architecture Capability Assessment. META Practice, Vol. 4(7),
META Group, Inc. (2000)

11. Van den Berg, M., Van Steenbergen, M.: Building an Enterprise Architecture Practice:
Tools, Tips, Best Practices, Ready-to-use Insights. Springer, Heidelberg (2006)

12. Peterson, R.: Crafting Information Technology Governance. Information Systems
Management 21(4), 7–22 (2004)

13. Smolander, K., Päivärinta, T.: Describing and Communicating Software Architecture in
Practice: Observations on Stakeholders and Rationale. In: Pidduck, A.B., Mylopoulos, J.,
Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 117–133. Springer,
Heidelberg (2002)

14. Ross, J.W., Beath, C., Goodhue, D.L.: Develop long-term competitiveness Through IT
assets. Sloan Management Review 38(1), 31–45 (Fall, 1996)

15. Van der Raadt, B., Hoorn, J.F., Van Vliet, H.: Alignment and Maturity Are Siblings in
Architecture Assessment. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS.
vol. 3520, pp. 357–371. Springer, Heidelberg (2005)

16. Simonsson, M., Lindström, Å., Johnson, P., Nordström, L., Grundbäck, J., Wijnbladh, O.:
Scenario-Based Evaluation of Enterprise Architecture - A Top-Down Approach for CIO
Decision-Making. In: Proceedings of the International Conference on Enterprise
Information Systems (ICEIS 2005) (May 2005)

118 B. van der Raadt and H. van Vliet

17. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation.
Technical Report, CMU/SEI-2000-TR-004 (2000), http://www.sei.cmu.edu/pub/
documents/00.reports/pdf/00tr004.pdf

18. Pulkkinen, M.: Systemic Management of Architectural Decisions in Enterprise
Architecture Planning. Four Dimensions and Three Abstraction Levels. In: Proceedings of
the 39th Annual Hawaii International Conference on System Sciences (HICSS 2006), p.
179a (2006)

19. Van der Raadt, B., Schouten, S., Van Vliet, H.: Stakeholder Perception of EA Function
Performance, In: Second European Conference On Software Architecture (ECSA 2008),
(Submitted to, April 2008)

20. Moore, G.A.: Strategy and your stronger hand. Harvard Business Review 83(12), 62–71
(2005)

21. Janssen, M., Joha, A.: Issues in relationship management for obtaining the benefits of a
shared service center. In: Janssen, M., Sol, H.G., Wagenaar, R.W. (eds.)Proceedings of the
6th international Conference on Electronic Commerce, ICEC 2004, Delft, The
Netherlands, vol. 60, pp. 219–228. ACM, New York (2004)

22. Van der Aalst, W., Hofstede, A., Weske, M.: Business process management: A survey. In:
van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

23. Leana, C.R., Barry, B.: Stability and Change as Simultaneous Experiences in
Organizational Life. The Academy of Management Review 25(4), 753–759 (2000)

24. Crossan, M., Lane, H., White, R.: An organizational learning framework: From intuition to
institution. Academy of Management Review 24, 522–537 (1999)

25. Baker, B.: The role of feedback in assessing information systems planning effectiveness.
The Journal of Strategic Information Systems 4(1), 61–80 (1995)

26. March, J.G.: Exploration and Exploitation in Organizational Learning. Organization
Science 2(1), 71–87 (1991)

27. Kotter, J.P.: Leading Change. Harvard Business School Press, Boston (1996)
28. Henderson, J.C.: Plugging into strategic partnerships: The critical IS connection. Sloan

Management Review 31(3), 7–18 (1990)
29. Eisenhardt, K.M., Bourgeois III, L.J.: Politics of Strategic Decision Making in High-

Velocity Environments: Toward a Midrange Theory. The Academy of Management
Journal 31(4), 737–770 (1988)

Quality Prediction of Service Compositions

through Probabilistic Model Checking

Stefano Gallotti, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli

Politecnico di Milano
DeepSE Group–Dipartimento di Elettronica e Informazione

Piazza Leonardo Da Vinci, 32 – 20133 Milano, Italy
{gallotti,ghezzi,mirandola,tamburrelli}@elet.polimi.it

Abstract. The problem of composing services to deliver integrated busi-
ness solutions has been widely studied in the last years. Besides address-
ing functional requirements, services compositions should also provide
agreed service levels. Our goal is to support model-based analysis of
service compositions, with a focus on the assessment of non-functional
quality attributes, namely performance and reliability. We propose a
model-driven approach, which automatically transforms a design model
of service composition into an analysis model, which then feeds a prob-
abilistic model checker for quality prediction. To bring this approach to
fruition, we developed a prototype tool called ATOP, and we demonstrate
its use on a simple case study.

1 Introduction

Service-Oriented Architectures (SOAs) provide a new paradigm for the creation
of business applications. This paradigm enforces decentralized developments and
distributed systems compositions: new added-value services may be created by
composing independently developed services. Web services are an increasingly
important and practical instance of SOAs, supported by standards and by spe-
cific technology. Typically, services can be composed in an orchestrated manner
by using a workflow language, like the Business Process Execution Language
(BPEL) [4].

We argue that SOAs can benefit from the Model Driven Development (MDD)
[6] paradigm. In essence, this means that models are built to support software
engineers in reasoning at the software architecture level. As a satisfactory solu-
tion is built at the model level, transformation steps (possibly automated) derive
the final, platform-specific implementation. In the case of SOAs, model-level rea-
soning should support the early QoS assessment of a service composition. The
composition may be assessed at design time, before a concrete binding from the
workflow to the externally invoked services is established. The assessment is thus
performed on the abstract workflow. It is requested, however, that a specification
of the external services in terms of their functional and non-functional attributes
is available. The actual binding from the abstract workflow to concrete services
may then be established dynamically at run time, provided that the selected

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 119–134, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

120 S. Gallotti et al.

concrete services fulfill their specification. This may be enforced by a suitable
QoS-driven binding mechanism.

The use of models extends beyond the initial development of an application.
Models may be used to support evolution of the software architecture. They can
also be useful to devise suitable reconfiguration strategies for the dynamic con-
texts where the application will be deployed. Once the application is running,
model-based reasoning may be used to predict the impact of different reconfig-
urations in a changing context, driving in this way the reconfiguration process.

In this perspective, hereafter we tackle the following two issues: i) which kind
of model is suitable for quality analysis of service-based applications; ii) how we
can support the construction of such a model.

Concerning the first issue, we build on past work on architectural reasoning
and analysis of quality aspects through model checking [10,11], and in particular
on the probabilistic model checker PRISM [34], which was used for a preliminary
assessment in [23]. This choice is motivated both by the encouraging results we
achieved, which demonstrated the applicability of these techniques to a wide set
of systems, and by the existence of tools implementing these techniques.

Concerning the second issue, we leverage on the aforementioned MDD pa-
radigm, to transform a high-level description to executable code. To perform
analysis of non-functional quality attributes at the model level, we propose a
model transformation step that takes as input a ”design-oriented” model of the
software system (plus some additional information related to the non-functional
attribute of interest) and generates an ”analysis-oriented” model, that lends
itself to the application of an analysis methodology [26]. Specifically, we provide
an integrated framework that, starting from an high level description of the
service composition, given in terms of activity diagrams, automatically derives
stochastic models that can be solved using the different features of the PRISM
model checker. The provided methodology and tool are called ATOP, which
stands for from Activity diagrams TO Prism models. Besides, we try to overcome
a weakness of PRISM. The ATOP tool, in fact, includes the possibility to perform
some kind of parametric analysis that at present is not fully supported in PRISM.

This paper is organized as follows. Section 2 presents the basic concepts of
probabilistic model checking and PRISM. Section 3 illustrates the proposed
MDD approach, while Section 4 provides the details of the approach for early
quality assessment of service compositions. Section 5 describes the tool imple-
menting our methodology and Section 6 describes how the proposed approach
can be applied to a case study. Section 7 briefly surveys related work and Sec-
tion 8 presents the conclusions.

2 Background

In this section we shortly review the basic concepts of the probabilistic model
checking approach and the PRISM tool.

Probabilistic Model Checking is an automatic procedure for establishing if a
desired property holds in a probabilistic system model. Conventional model

Quality Prediction of Service Compositions 121

checkers start from a description of a model and a specification (using a state-
transition system and a formula in some temporal logic, respectively) and return
a boolean value, indicating whether or not the model satisfies the specification.
In the case of probabilistic model checking, the models are probabilistic (typi-
cally, variants of Markov chains) and they add a probability to the transitions
between states. In this way it is possible to calculate the likelihood of the occur-
rence of certain events during the execution of the system. This, in turn, allows
quantitative analysis about the system, in addition to the qualitative statements
made by conventional model checking. Probabilities are modeled via probabilis-
tic operators that extend conventional (timed or untimed) temporal logic.

Probabilistic modeling is widely used in the field of performance evaluation; for
example several algorithmic techniques and tools exist for Markovian models [12].
However, the key point of probabilistic model checking is the ability to combine
probabilistic analysis and conventional model checking in a single tool. The first
extension of model checking algorithms to probabilistic systems was proposed
in the 1980s. However, work on implementation and tools did not begin until
recently, when the field of model checking matured [24,25]. Probabilistic model
checking draws on conventional model checking, since it relies on reachability
analysis of the underlying transition system, but must also entail the calculation
of the actual likelihoods through appropriate numerical methods, such as those
employed in performance analysis tools [24,25].

PRISM is the model checker we selected to verify our models. PRISM [34]
is a probabilistic model checker developed at the University of Birmingham.
PRISM is a tool for the design and analysis of systems that exhibit probabilistic
behaviors. It supports three types of probabilistic models: Discrete-Time Markov
Chains, Markov Decision Processes, and Continuous-Time Markov Chains ([12]).
Models are specified in a simple, high-level modeling language, which is a variant
of the Reactive Modules formalism of Alur and Henzinger [3]. Properties are
described by the PRISM property specification language, which is based on the
two probabilistic temporal logics, called Probabilistic Computation Tree Logic
(PCTL) [22] and Continuous Stochastic Logic (CSL) [7].

3 The ATOP Methodology

As introduced in Section 1, our approach derives quality predictions for service
compositions. Each simple service of the composition is considered as a black-
box entity. The process involved in this quality prediction analyzes abstract
representations of service compositions to derive models suitable for applying
probabilistic model checking techniques. Software architects may exploit this
prediction to evaluate and compare different alternatives at design-time.

In Figure 1 we show a UML Activity Diagram (AD) outlining the main steps
involved in the application of our methodology, by highlighting also who is in
charge of them. Our approach starts from the application workflow specifications

122 S. Gallotti et al.

Software
Architect

Identify Application Requirements Discover and Compose Services

UML
Modeling Tool
(e.g., Papyrus)

Quality Annotations

Quality Model
Generation

Properties
Specification

Probabilistic Model
Cheking

Analysis of
Results

Requirement Refinement

Composition Refinement

Goals not met

ATOP Approach

Fig. 1. The ATOP methodology

and derives quality predictions, such as application Success probability (an ex-
ample of this quality prediction is illustrated in Section 6), through the following
steps:

Identify application requirements. The software architect describes the ap-
plication (s)he intends to realize and details its functional and non-functional
requirements.

Discover and compose services. The software architect considers the ser-
vices to compose only through their functional and non-functional annota-
tions and builds the application through a service composition language.
More precisely, our approach addresses the design phase of service composi-
tions, which are represented through a UML AD [30]. At the implementation
level, software architects exploit techniques like [14] for service discovery and
workflow languages like BPEL [4] for service composition representation.

We assume that ADs representing service compositions are generated
by using an ad-hoc tool, such as the UML Papyrus framework [32]. Our
approach considers a subset of UML Activity Diagrams to represent sound
service compositions. Supported diagrams are composed by only one Ini-
tialNode and only one FinalNode. Between these two elements there can be
a sequence of the following elements: (i) activity, (ii) conditional block, and
(iii) concurrent blocks, connected by means of arrows specifying the flow of
execution.

Activity models invocation of a service. A conditional block is defined
with a DecisionNode and a MergeNode. The conditional block appears in two
different configurations, If or Loop, depending on the composition topology.
Each branch of the decision block can contain a sequence of activities, decision

Quality Prediction of Service Compositions 123

blocks and concurrent blocks. Concurrent blocks are defined by means of
ForkNodes and JoinNodes. Each outgoing branch can contain the same afore-
mentioned sequence of elements.

Quality annotations. Activity diagrams describing the composition are en-
riched by exploiting UML extensions. Through a UML profile, every Activ-
ityNode is annotated with quality attributes of the selected service. Output
arrows from a DecisionNode are annotated with the probability to follow
each branch. Our approach exploits a subset of MARTE [31], a UML profile
designed for specification of non-functional requirements of software systems
and available in the Papyrus framework. We use the support of MARTE to
represent a restricted subset of information; the main considered annotations
are:

– Service Reliability: associated with an ActivityNode. It is a real num-
ber between 0 and 1 that represents the reliability of a single service
invocation;

– Service Execution Time: associated with an ActivityNode. It represents
the expected execution time of a service invocation.

– Service Invocations Attempts : associated with an ActivityNode. It rep-
resents the number of failed invocations necessary to declare a service to
be faulty.

– DecisionNode Output probabilities : associated with output branches of a
DecisionNode: they represent the probability to follow a given branch.

– Service Degradation Function: associated with an ActivityNode It is a
domain-related law specifying dependency of service values from the ex-
ecution context, e.g. size of input parameters. Due to its nature, this
law can be inferred from observations or can be obtained from domain
experts.

The Service Degradation Function is a peculiarity of the ATOP methodol-
ogy. In particular, it supports parametric analysis. Indeed, this annotation
describes the relation between a service composition input parameter and the
quality properties of the basic services involved in the composition. For exam-
ple, if a degradation function related to a parameter (e.g., input size) is spec-
ified for a service, during the model generation step all the values expressed
by the other annotations in the service composition are updated by evaluat-
ing this degradation function. This mechanism is necessary to express the fact
that reliability, execution time, invocation attempts, and branch probabilities
are often dependent on specific service composition input parameters. Figure
2 illustrates two examples of non-functional annotations on ADs.

Quality models generation. A service composition, where model and anno-
tations are described as presented before, is automatically translated into
a quality model by the ATOP tool. The target quality model must be
chosen according to the characteristics of the model and to the proper-
ties to be verified via the probabilistic model checker. ATOP considers the
following Markovian models: (1) Discrete Time Markov Chains (DTMC),

124 S. Gallotti et al.

(a) Activity annotation (b) Branch annotation

Fig. 2. Annotated Activity Diagrams

(2) Markov Decision Processes (MDP), and (3) Continuous Time Markov
Chains (CTMC). A detailed description of this step is given in Section 4.

Properties specification. The set of properties to be verified on the model
should be specified according to overall quality requirements. These proper-
ties are formulated through logic formulas expressed as CTL logic extensions.

Probabilistic Model Checking. The automatic modeling step generates a
model, which is given as input to the probabilistic model checker. The model
checker analyzes the received model with respect to the properties specified
by the user.

Analysis of Results. The software architect analyzes the output produced by
the probabilistic model checker to verify if the service composition matches
the quality goals required by the application domain. If these goals are met,
the development process continues to produce an implementation; otherwise,
alternative compositions are evaluated in order to reach the required goals.
A detailed example of the possible analysis is illustrated in Section 6.

4 Quality Modeling of Service Compositions

In this section we present the details of the quality model generation step of
the ATOP methodology (illustrated in Figure 3). To this end, we provide a
short description of (i) the target transformation models, (ii) the properties
specifications and (iii) the translation process.

4.1 Target Models

The translation process is based on the exploration of the AD, starting from the
InitialNode until the FinalNode. Depending on the nature of the model and on
the type of analysis to be performed, different Markovian models can be chosen
as output of the translation process.

In our framework, the DTMC model is used to model simple service compo-
sitions without concurrent branches and without timing information associated

Quality Prediction of Service Compositions 125

Fig. 3. Service composition analysis

with services. Should service compositions include concurrent sections (where
service invocations are executed in parallel), it is necessary to model all the pos-
sible interleaved invocations. To this end, it is necessary to use a MDP model,
which exploits non-determinism modelling all the paths the system could follow.

If the analysis focuses on the time necessary for the system to perform its
functionalities, a CTMC model is instead required. By modeling the transition
probability as an exponential distribution, each service invocation can be rep-
resented as a state whose transition parameter is related to the expected du-
ration of the service execution. Using a parameter λ representing the rate of
the exponential distribution and defining it as 1/expected duration the model
approximates the real temporal behavior of the system, giving a time-depending
probabilistic result. The system is characterized by an initial transient phase and
finally probability values asymptotically stabilize.

4.2 Properties Specifications

We analyze the model by verifying properties specified in temporal logic and
evaluated through model checking. Basic properties on a service composition
can be the reliability value of the whole complex system (e.g., the probability
that starting from the initial state the system eventually reaches the success
state), specified in PCTL as

P [F (system state = success)]

where Ff (eventually operator) represents the short form of true U f (U is the
“until” temporal operator).

Similar properties can be evaluated starting from each state of the system

system state = ”a certain service invocation” ⇒ P [F (system state = success)]

126 S. Gallotti et al.

The evaluation of these properties support the discovery of configurations that
can be critical for the system. Properties can also be specified to obtain a boolean
result. Indeed, we can also express properties like

P≥threshold[F (system state = success)]

whose evaluation yields a boolean value (true if the probability result complies
with the threshold bound). Depending on the desired analysis, different logic prop-
erties can be formulated over the model and then submitted to the model checker.

4.3 Translation Elements

The translation process from ADs to Markov models is based on the exploration
of the original model, starting from the InitialNode along the execution path
defined by the control flow. In the following we describe how the translation of
the main AD elements is performed. The tool implementing the translation is
described in Section 5. The Initial and Final nodes of the AD correspond to the
initial and final states of the Markov model.

The Activity is the core element of an AD that describes a service invoca-
tion and can contain additional information through annotations. An Activity
is translated into a node with two outgoing transitions: the success transition
and the failure transition. The probabilities associated with the two transitions
depend on the annotations of the original diagram; the destination states can be
the next state, in case of success, and a retry or a fail state, in case of failure.

Decision and Merge nodes in ADs decision blocks can assume the If and
Loop configurations, depending on the topology of the components. In the for-
mer case, the translation process creates in the Markovian model a new node
representing the If node and as many transitions as there are outgoing branches.
The exploration continues for each branch over the path, until the MergeNode is
reached. Then the exploration resumes from the node following the MergeNode.
In the latter case (Loop), the exploration is performed over the loopback arc until
the MergeNode is reached. Then the exploration continues over the remaining
branch exiting the Loop node.

Fork and Join nodes define a concurrent block. The translation requires the
exploration of all the branches exiting the ForkNode, until a JoinNode is reached.
Each branch is modeled by an independent sub-diagram. The exploration re-
sumes starting from the node following the JoinNode.

Additional information on the model define non-functional properties. They
are used to drive the creation of the probabilistic model, as described hereafter:

– Service Reliability: the value α of reliability is used as the probability of the
success transition. The related fail transition has the probability 1 − α.

– Service Execution Time: in a CTMC model, the rate of the exponential
distribution λ is defined as 1/expected duration

– Service Invocations Attempts. The service can be invoked a given numbers
of time before being declared as failed. Therefore, the fail state is reached
only when the last attempt is performed and fails.

Quality Prediction of Service Compositions 127

The translation process is realized in the ATOP tool described in the next
section.

5 The ATOP Tool

As described in Section 3, the ATOP approach takes as input a formal repre-
sentation of the service composition drawn as a UML AD extended with quality
annotations. This representation is exported in the XMI format, elaborated by
the ATOP tool and translated into a PRISM model. Note that, although the
XMI format is near to be a standard, each tool representation differs for small
details, which implies that a single interpreter is not valid in each case. The
translator tool builds a graph-based representation obtained by means of a tool-
specific interpreter. In this way the translator can be easily extended to support
new design tool just adding an extension tailored on the new XMI format. The
translation process is based on the recursive exploration of the graph, performing
the operations described in Section 4 to generate an output model on the basis
of the information provided by the AD. This tool can be executed directly form
the command line or through a graphical user interface. The latter offers an aid
to select the input and output format options and shows translation results.

In several contexts, service quality needs to be evaluated depending on some
execution parameters. At present the PRISM model checker does not offer full
support for parametric analysis of the model; the ATOP tool overcomes such
limitation generating models whose values are set depending on given parame-
ters. Using ATOP it is possible to specify the execution context parameters (e.g.,
input size) based on which, if a degradation law is defined for services compo-
nents, the non-functional values are adjusted. In this way the system behaviour
can be automatically analyzed in different contexts. The model is then evaluated
by means of automatic analysis techniques, via PRISM.

6 Case Study

In this section, we illustrate our approach through a case study of a service com-
position. The system resulting from this composition offers a travel management
functionality. Starting from travel location, it offers booking services and noti-
fications. The high level composition specification is shown in Figure 4 through
an extended AD. The workflow initially performs three service invocations, to
identify the requirements of the travel. Then two concurrent task are executed:
a parking booking and a process of notification to the user. After execution of
both, the service performs a meeting arrangement and subsequently notifies the
commitment for the travel. The activities in the diagram represent service invo-
cations, annotated with a reliability value and an execution time expressed in
seconds. This information is obtained from the service providers. The diagram
offers a view in which single elements are organized to offer a more complex
system. The concrete implementation is a BPEL xml file (although any other
equivalent orchestration language could be adopted).

128 S. Gallotti et al.

Fig. 4. Travel Management Service Activity

The AD represented by an XMI file can be translated in three different Marko-
vian models, as discussed in Section 4. The first model (DTMC) does not take
into account time and cannot model concurrency. The concurrent branches in
the AD of Figure 4 are automatically condensed into a single activity1. DTMC
supports the evaluation of the expected reliability value concerning the whole
service composition or the expected reliability value concerning part of it (i.e.,
starting from an inner state, different from the initial state). The property asso-
ciated with the global reliability of the system is expressed in PCTL as:
1 This step is carried out by PRISM generating, with equal probabilities, all the pos-

sible paths composed by interleaved activities. The paths are then evaluated and the
results of the analysis are aggregated in a single node.

Quality Prediction of Service Compositions 129

P [F (system state = success)].

The probabilistic model checker returns a probability of 0.775, which represents
the reliability of the service composition. The same property can be locally
evaluated starting from any specific inner state. For example, the table below
shows the reliability values obtained starting from two inner states.

state PCTL formula result
checkSchedule state = checkSchedule ⇒ P [F (system state = success)] 0.824
requestMeeting state = requestMeeting ⇒ P [F (system state = success)] 0.950

The second kind of model (MDP), supports the analysis of concurrent execu-
tions. More precisely, it is possible to compute the reliability values associated
with internal states of concurrent areas of the diagram. In presence of concurrent
branches the order in which elements of different branches are interleaved cannot
be predicted. By using MDP, it is possible to compute reliability values asso-
ciated with internal states of concurrent sections of the diagram, which would
otherwise be impossible using DTMC. Considering all the possible non deter-
ministic evolutions of the system, the model checker can return the upper and
lower bounds of reliability. The table below reports the maximum and minimum
reliability values obtained from a concurrent state of the composition.

state PCTL formula result
makeCall state = makeCall ⇒ Pmax[F (system state = success)] 0.932
makeCall state = makeCall ⇒ Pmin[F (system state = success)] 0.841

The third type of model generated is CTMC, which focuses on the time associ-
ated with every service invocation. This analysis shows how the reliability of the
system changes with respect to the time. This result approximately indicates a
time bound for global service execution. The composition illustrated in this case
study contains a concurrent block and, consequently, we cannot directly adopt
a CTMC model. The analysis is performed by substituting the concurrent block
with a synthesis node containing results of probabilistic model checking related
to each concurrent branch. The properties checked are similar to the properties
obtained with a DTMC model, but with an indication of the time dependency.

Figure 5 shows the probability value of reaching the success state within time
t, computed for t ranging in an interval [0, 70] (seconds). This represents how
the probability of success evolves over time after the invocation of the composed
service. This value tends in the long run to the value obtained with the DTMC
model (0.775), the reliability value of the service.

The CSL specification of this property is

P [true U[0,t]system state = success]

and its evaluation is obtained by varying parameter t that represents the time.
This example does not model any recovery behavior, each service is invoked just
once. The reliability of the whole system could be improved, by increasing the
expected execution time, modeling for each service the number of retries for
failure invocations.

130 S. Gallotti et al.

Fig. 5. Success probability evolution

7 Related Work

In the last years, Quality of Service (QoS) has been extensively studied in the
context of traditional software systems. In particular, there has been a great
interest in model transformation methodologies for the generation of analysis-
oriented target models (including performance and reliability models) starting
from design-oriented source models, possibly augmented with suitable annota-
tions. In particular, several proposals have been presented concerning the direct
generation of performance analysis models. Each of these proposals focuses on
a particular type of source design-oriented model and a particular type of tar-
get analysis-oriented model, with the former spanning UML, Message Sequence
Chart, Use Case Maps, formal language as AEmilia, ADL languages as Acme,
and the latter spanning Petri nets, queueing networks, layered queueing network,
stochastic process algebras, Markov processes (see [8] for a thorough overview
of these proposals and [1] for recent proposals on this topic). Some proposals
have also been presented for the generation of reliability models. All the pro-
posals we are aware of start from UML models with proper annotations, and
generate reliability models such as fault trees, Markov processes and Bayesian
models (see [21] for more details). Moreover, some attempts have been made in
the literature [2,19,20] to translate UML specifications into models to be solved
by probabilistic model checkers. Specifically, in [2] it is proposed a methodology
that translates UML statecharts (with annotations for real-time systems) into
probabilistic timed automata that are then solved using PRISM. Gilmore et al.
in [19,20] propose a method translating UML statecharts into stochastic process
algebra (PEPA) models that are then solved using PRISM.

Recently, QoS issues in service selection and composition have obtained great
interest in the service research community. Different approaches have been fol-
lowed so far, spanning the use of QoS ontologies [28], the definition of ad-hoc
methods in QoS-aware frameworks [33,38], and the application of optimization
algorithms [5,13,39].

One of the first works in this area is proposed in [29] where a framework
for composed services modeling and QoS evaluation is presented. A composite
service is modeled as a directed weighted graph where each node corresponds to
a Web Service (WS) and edge weights represent the transition probabilities of

Quality Prediction of Service Compositions 131

two subsequent tasks. The author shows how to evaluate quality of service of a
composed service from basic services characteristics and graph topology.

Some recent proposals face the problem of composition of WSs by implement-
ing genetic algorithms. In Canfora et al. [13] the reduction formulas presented
in [16] are adopted, and the problem is also periodically re-optimized in order
to take into account WS performance variability. However, only sub-optimal
solutions are identified since WSs specified inside execution loops are always
assigned to the same Web service implementation. The paper [17] proposes a
mechanism that implements an optimizing WS composition combining perfor-
mance optimization, price optimization, and payload optimization when meeting
the requirements of Service-level Agreement (SLA). In [35] the authors propose
both an evaluation approach for QoS attributes of WS, which is completely ser-
vice and provider independent, and a method to analyze WS interactions and
extract important QoS information without any knowledge about the service
implementation. In [37] the WS composition from a performance viewpoint is
studied and measured. This measurements demonstrate that WS composition
may reduce the maximal load of a system drastically (i.e., quasi-exponentially
with the number of service compositions). In order to mitigate this performance
reduction, the author proposes an optimized service composition architecture as
a solution.

The works closest to ours concern methods to derive performance related
measures of workflow processes [15,27,36]. Cardoso [15] proposes two different
metrics to evaluate the control-flow complexity of BPEL web processes before
their actual implementation. In [36] a mathematical model based on operations
research techniques is proposed to estimate the influence of the execution of
orchestrated processes on utilization and throughput of the system. In [27]
starting from annotated BPEL and WSDL specifications, performance bounds
on response time and throughput are derived. In such a way users are able to
assess the efficiency of a BPEL workflow, while service provider(s) can perform
sizing studies or estimate performance gains of alternative upgrades to existing
systems.

A related approach to verifying service-oriented architectures is described in
[9]. This work deals with new added-value services obtained by composing exist-
ing services through workflows described in the BPEL language. The workflows
are verified at design time via model checking. The properties against which de-
signs are checked are then transformed into run-time monitored assertions to sup-
port run-time verification. Properties are expressed in a temporal logic language
(ALBERT), which can express both functional and non-functional properties,
such as expected response time. Properties are of two kinds: Assumed Asser-
tions (AAs), which state the expected behavior of the external services invoked
by the workflow, and Guaranteed Assertions (GAs), which state the properties
the workflow is expected to ensure to its users. Model checking is used to prove
that GAs are satisfied, assuming that AAs hold. The approach explored in this
work, however, does not support any kind of probabilistic reasoning. It is based
on the use of the Bogor model checker [18].

132 S. Gallotti et al.

With respect to existing work, our approach represents a first attempt at a
design methodology (and supporting tools) through which QoS properties may
be specified and formally analyzed for service compositions.

8 Conclusions

In this paper we have presented ATOP: a design methodology (and supporting
tools) through which QoS properties may be specified and formally analyzed for
service compositions. In particular, QoS reasoning is based on probabilistic mod-
elling, which is crucial for performance and reliability prediction. Our approach
is supported by a tool that translates a high-level design description into a form
that is amenable to probabilistic model checking using PRISM. Our initial as-
sessment of the approach has been quite encouraging, and a further development
of case studies will be part of our future activities.

Our future work will also focus on systematizing the feedback loop from run-
time observations of the performance attributes of a running composite service
back to the design environment. If the running system is found to behave incon-
sistently with respect to the design model, it would be desirable to re-calibrate
the design model with more accurate data drawn from run-time gathered infor-
mation, and possibly derive an improved implementation. This of course requires
that models should be kept alive at run time. It also requires ways to perform
analyses at run time in an efficient and light-weight manner, possibly incremen-
tally. To the best of our knowledge, this is still an unexplored research path.

Acknowledgments

This work has been partially supported by Project Q-ImPrESS (FP7-215013)
funded under the European Union’s Seventh Framework Programme (FP7).

References

1. Wosp : Proceedings of the international workshop on software and performance,
(1998-2007)

2. Addouche, N., Antoine, C., Montmain, J.: Combining extended uml models and
formal methods to analyze real-time systems. In: Winther, R., Gran, B.A., Dahll,
G. (eds.) SAFECOMP 2005. LNCS, vol. 3688. pp. 24–36. Springer, Heidelberg
(2005)

3. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:
An International Journal 15(1), 7–48 (1999)

4. Alves, A.: et al. Web service business process execution language version 2.0. Com-
mittee Draft, 17 (May 2006)

5. Ardagna, D., Pernici, B.: Global and Local QoS Guarantee in Web Service Selec-
tion. In: Proc. of Business Process Management Workshops, pp. 32–46 (2005)

6. Atkinson, C., Kuhne, T.: Model-driven development: A metamodeling foundation.
IEEE Software 20(5), 36–41 (2003)

Quality Prediction of Service Compositions 133

7. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996)

8. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Trans. Software Eng. 30(5),
295–310 (2004)

9. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET Software 1(6), 219–232 (2007)

10. Baresi, L., Gerosa, G., Ghezzi, C., Mottola, L.: Playing with time in publish-
subscribe using a domain-specific model checker. In: SAVCBS 2007: Proceedings of
the 2007 conference on Specification and verification of component-based systems,
pp. 55–62. ACM, New York (2007)

11. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of publish-
subscribe architectures. In: ICSE 2007: Proceedings of the 29th International Con-
ference on Software Engineering, Washington, DC, USA, pp. 199–208. IEEE Com-
puter Society, Los Alamitos (2007)

12. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queuing Network and Markov
Chains. John Wiley, Chichester (1998)

13. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An Approach for QoS-
aware Service Composition Based on Genetic Algorithms. In: Proc. of Genetic and
Computation Conf. Washington, DC, pp. 1069–1075 (June 2005)

14. Cardellini, V., Casalicchio, E., Grassi, V., Mirandola, R.: A framework for optimal
service selection in broker-based architectures with multiple QoS classes. In: Ser-
vices computing workshops, SCW 2006, pp. 105–112. IEEE Computer Society, Los
Alamitos (2006)

15. Cardoso, J.: Complexity analysis of BPEL web processes. Software Process: Im-
provement and Practice 12(1), 35–49 (2007)

16. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service
for workflows and web service processes. J. Web Sem. 1(3), 281–308 (2004)

17. Dong, W.L., YU., H.: Optimizing web service composition based on qos negotiation.
EDOCW 0, 46 (2006)

18. Dwyer, M.B., Hatcliff, J., Hoosier, M., Robby,: Building your own software model
checker using the bogor extensible model checking framework. In: Etessami, K., Ra-
jamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 148–152. Springer, Heidelberg
(2005)

19. Gilmore, S., Haenel, V., Kloul, L., Maidl, M.: Choreographing security and perfor-
mance analysis for web services. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.)
EPEW/WS-EM 2005. LNCS, vol. 3670. pp. 200–214. Springer, Heidelberg (2005)

20. Gilmore, S., Kloul, L.: A unified tool for performance modelling and prediction.
Reliability Engineering and System Safety 89, 17–32 (2005)

21. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach.
Journal of Systems and Software 80(4), 528–558 (2007)

22. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

23. He, F., Baresi, L., Ghezzi, C., Spoletini, P.: Formal analysis of publish-subscribe
systems by probabilistic timed automata. In: Derrick, J., Vain, J. (eds.) FORTE
2007. LNCS, vol. 4574, pp. 247–262. Springer, Heidelberg (2007)

24. Kwiatkowska, M.: Quantitative verification: Models, techniques and tools. In: Proc.
6th joint meeting of the European Software Engineering Conference and the ACM

134 S. Gallotti et al.

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp. 449–458. ACM Press, New York (2007)

25. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

26. Di Marco, A., Mirandola, R.: Model transformation in software performance engi-
neering. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 95–110. Springer, Heidelberg (2006)

27. Marzolla, M., Mirandola, R.: Performance prediction of web service workflows.
In: Overhage, S., Szyperski, C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007.
LNCS, vol. 4880. Springer, Heidelberg (2008)

28. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web
Services Selection. IEEE Internet Computing 8(5), 84–93 (2004)

29. Menasce, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75
(2002)

30. Object Management Group. UML 2.0 superstructure specification (2002)
31. Object Management Group OMG. UML Profile for Modeling and Analysis of Real-

Time and Embedded Systems. ptc/07-08-04 (2007)
32. Papyrus UML, http://www.papyrusuml.org/
33. Patel, C., Supekar, K., Lee, Y.: A QoS Oriented Framework for Adaptive Manage-

ment of Web Service Based Workflows. In: Mař́ık, V., Štěpánková, O., Retschitzeg-
ger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 826–835. Springer, Heidelberg
(2003)

34. PRISM, Probabilistic Model Checker, http://www.prismmodelchecker.org/
35. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-

ability attributes of web services. ICWS 0, 205–212 (2006)
36. Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of WS-BPEL-based

web service compositions. SCW 0, 140–147 (2006)
37. Schmid, H.A.: Service congestion: The problem, and an optimized service compo-

sition architecture as a solution. ICWS 0, 505–514 (2006)
38. Yu, T., Lin, K.J.: A Broker-Based Framework for QoS-Aware Web Service Com-

position. In: Proc. of 2005 IEEE Int’l Conf. on e-Technology, e-Commerce and
e-Service (March 2005)

39. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: QoS-Aware Middleware for Web Services Composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

http://www.papyrusuml.org/
http://www.prismmodelchecker.org/

Model-Driven Performance Analysis

Gabriel A. Moreno and Paulo Merson

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA, USA
{gmoreno,pfm}@sei.cmu.edu

Abstract. Model-Driven Engineering (MDE) is an approach to develop
software systems by creating models and applying automated transfor-
mations to them to ultimately generate the implementation for a target
platform. Although the main focus of MDE is on the generation of code,
it is also necessary to support the analysis of the designs with respect
to quality attributes such as performance. To complement the model-to-
implementation path of MDE approaches, an MDE tool infrastructure
should provide what we call model-driven analysis. This paper describes
an approach to model-driven analysis based on reasoning frameworks.
In particular, it describes a performance reasoning framework that can
transform a design into a model suitable for analysis of real-time per-
formance properties with different evaluation procedures including rate
monotonic analysis and simulation. The concepts presented in this pa-
per have been implemented in the PACC Starter Kit, a development
environment that supports code generation and analysis from the same
models.

1 Introduction

Model-Driven Engineering (MDE) is an approach to create software systems
that involves creating models and applying automated transformations to them.
The models are expressed in modeling languages (e.g., UML) that describe the
structure and behavior of the system. MDE tools successively apply pre-defined
transformations to the input model created by the developer and ultimately gen-
erate as output the source code for the application. MDE tools typically impose
domain-specific constraints and generate output that maps onto specific middle-
ware platforms and frameworks [1]. MDE is often indistinctively associated to
OMG’s Model-Driven Architecture and Model-Driven Development.

The ability to create a software design and apply automated transformations
to generate the implementation helps to avoid the complexity of today’s im-
plementation platforms, component technologies and frameworks. Many MDE
solutions focus on the generation of code that partially or entirely implements
the functional requirements. However, these solutions often overlook runtime
quality attribute requirements, such as performance or reliability. Fixing quality
attribute problems once the implementation is in place has a high cost and often
requires structural changes and refactoring. Avoiding these problems is the main

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 135–151, 2008.
c© Carnegie Mellon University 2008

136 G.A. Moreno and P. Merson

Fig. 1. Model-Driven Engineering and Model-Driven Analysis

motivation to perform analysis early in the design process. To complement the
model-to-implementation path of MDE approaches, an MDE tool infrastructure
should provide what we call model-driven analysis. The model to code path and
the model-driven analysis path are notionally represented in Figure 1. The goal
of model-driven analysis is to verify the ability of the input design model to meet
quality requirements.

The Software Engineering Institute has developed an MDE tool infrastruc-
ture that offers code generation along with various analytic capabilities. This
tool infrastructure is called the PACC Starter Kit (PSK) [2]. It uses the concept
of reasoning frameworks [3] to implement analytic capabilities. Several reasoning
frameworks have been developed and applied to industry problems. This paper
focuses on our performance reasoning framework, which analyzes timing proper-
ties of component-based real-time systems. The paper describes the model-driven
approach used in the implementation of the reasoning framework.

The remainder of the paper is organized as follows. Section 2 introduces the
concept of a reasoning framework and then describes the elements of our perfor-
mance reasoning framework. Section 3 describes the intermediate constructive
model, which is the first model created when analyzing an input design. Section 4
explains the performance model and how it is generated from the intermediate
constructive model through a transformation called interpretation. Section 5
briefly describes how the performance model is used by different evaluation pro-
cedures to generate performance predictions. Section 6 shows an example of the
application of the concepts described in the paper. Section 7 discusses related
work and Section 8 has our concluding remarks.

2 Performance Reasoning Framework

A reasoning framework provides the ability to reason about a specific quality
attribute property of a system’s design [3]. Figure 2 shows the basic elements of
a reasoning framework. The input is an architecture description of the system,
which consists of structural and behavior information expressed in a modeling
language or any formally defined design language. Reasoning frameworks can-
not analyze any arbitrary design. Furthermore, there is a tradeoff between the
analytic power of a reasoning framework and the space of designs it can analyze.

Model-Driven Performance Analysis 137

Fig. 2. Basic elements of a generic reasoning framework

Reasoning frameworks restrict that space by imposing analytic constraints on
the input architecture description. The analytic constraints restrict the design
in different ways (e.g., topological constraints) and also specify what properties
of elements and relations are required in the design.

The architecture description is submitted to a transformation called interpre-
tation. If the architecture description is well-formed with respect to the con-
straints and hence analyzable, the interpretation generates an analytic model
representation. This model is an abstraction of the system capturing only the
information relevant to the analysis being performed. The types of elements, re-
lations and properties found in an analytic model are specific to each reasoning
framework. The analytic model is the input to an evaluation procedure, which
is a computable algorithm implemented based on a sound analytic theory. The
implementation of the evaluation procedure may be purely analytic, simulation-
based or a combination of both.

Figure 3 shows the basic elements of our performance reasoning framework.
Comparing to Figure 2, we see an additional step that translates the architecture
description to a data representation called ICM. ICM stands for intermediate
constructive model and it is a simplified version of the system’s original design.
The ICM is described in Section 3. The analytic model seen in Figure 2 corre-
sponds to the performance model in Figure 3, which will be described in Sec-
tion 4. The evaluation procedure box in Figure 2 corresponds to the performance
analysis box in Figure 3, which is carried out by analytic and simulation-based
predictors created based on rate monotonic analysis (RMA) [4] and queuing
theory [5]. As described in Section 5, the predictors can estimate average and
worst-case latency of concurrent tasks in a system that runs on a fixed priority
scheduling environment.

The performance reasoning framework is packaged and independently deployed
as an Eclipse plug-in [6]. Thus any Eclipsed-based tool used to model software sys-
tems in a parseable design notation could benefit from the performance reasoning

138 G.A. Moreno and P. Merson

Fig. 3. Performance Reasoning Framework

framework by exporting their designs to ICM. Examples of such tools include:
IBM Rational Software Architect, OSATE tool for the AADL language, Eclipse
Model Development Tools (MDT) UML2, and AcmeStudio. When adding the per-
formance reasoning framework plug-in to a modeling tool, the only thing one has
to do is to create a class that implements the following method:

AssemblyInstance translateDesignToIcm(IFile designFile);

As expected, the implementation of this method is entirely specific to the design
language representation used by the tool. We have implemented this method for
the CCL design language [7] that is used in the PSK. An explanation of CCL or
how to translate it to ICM is beyond the scope of this paper. But we should note
that the design language used as input for the performance reasoning framework
shall support the following elements and relations:

– Components with input and output ports1. If the design language were UML,
for example, UML components with required and provided interfaces could
be used.

– Special components called environment services (or simply services) that
represent external elements of the runtime environment that the system in-
teracts with. Clocks, keyboards, consoles, and network interfaces are exam-
ples of services. Like regular components, services may have sink and source
pins. In UML, they could be represented as stereotyped UML components.

– A way to wire the components together, that is, to connect a source pin to
a sink pin. In UML, a simple UML assembly connector could be used.

– A way to differentiate between synchronous and asynchronous interactions,
as well as threaded and unthreaded interactions. In UML, stereotypes could
be used to indicate these characteristics.

1 In CCL, an input port is called “sink pin” and an output port is called “source
pin”—these are the terms used in this paper.

Model-Driven Performance Analysis 139

– A way to annotate any element with specific pairs of key and value. These an-
notations are used for properties required by the reasoning framework (e.g.,
the performance reasoning framework requires the priority of each compo-
nent to be specified). In UML, annotations could be done with tagged values.

3 Intermediate Constructive Model

The architecture description that is the input to a reasoning framework (see
Figure 2) is itself a constructive model of the system. However, it often contains
many details that are not used in the performance analysis. For example, the
state machine of a component may be used for code generation but is not needed
by the performance reasoning framework. To remove details specific to the input
design language and hence simplify the interpretation translation, we created
the intermediate constructive model (ICM). The design-to-ICM translation (see
Figure 3) abstracts the elements of the architecture description that are relevant
to performance analysis to create the ICM.

Figure 4 shows the ICM metamodel. A complete description of the elements,
properties and associations in the ICM metamodel is beyond the objectives of
this paper. Here, we present the information pieces that are key to the perfor-
mance analysis discussion in subsequent sections. The entry point to navigate an
ICM is AssemblyInstance, which is the return type of the translateDesignToIcm
method mentioned earlier. The system being analyzed is an assembly of compo-
nents. In the ICM metamodel, a component is generically called ElementInstance.
The use of the suffix “instance” avoids confusion when the input design language
allows the definition of types of components. For example, in CCL one can define
a component type called AxisController. Then a given assembly may contain two
components (e.g., axisX and axisY) that are instances of that component type.
The ICM for that assembly would show two ElementInstance objects with the
same type (AxisController) but different names.

An ElementInstance object (i.e., a component) has zero or more pins (PinIn-
stance objects in the metamodel). Each pin is either a SinkPinInstance or a
SourcePinInstance object. A sink pin is an input port and when it is activated
it performs some computation. The performance analysis is oblivious to most
details of that computation. However, it is necessary to know what source pins
(output ports) are triggered during the computation and in what order—that is
given by the reactSources association between SinkPinInstance and SourcePinIn-
stance. It is also necessary to specify the priority that the sink pin computation
will have at runtime. Another important property of a sink pin is the execution
time for the corresponding computation, which is shown in the ICM metamodel
as the execTimeDistribution association between SinkPinInstance and Distribu-
tion. A sink pin can be synchronous or asynchronous. If it is synchronous, it
may allow concurrent invocations (reentrant code) or enforce mutual exclusion
on the sink pin’s computation.

Real-time systems, especially ones with aperiodic threads, sometimes exhibit
different behavior depending on certain conditions of the environment or differ-
ent pre-set configurations. For example, a system can be operating with limited

140 G.A. Moreno and P. Merson

Fig. 4. ICM metamodel (notation: UML)

capacity due to a failure condition, or a system can have optional “pluggable”
components. These kinds of variability are represented in the ICM as Scenario
objects. A scenario can be represented in the architecture description as anno-
tations to the assembly and the sink pins that are active under that scenario.

Once the ICM for a given architecture description is created, the performance
reasoning framework can perform the interpretation translation to generate the
performance model, which is used as input to the performance analysis. These
steps are described in the following sections.

4 Performance Model Generation

An important component of a reasoning framework is the interpretation process
that transforms an architecture description into an analytic model. Section 2
showed that the architecture description is translated to an intermediate rep-
resentation (ICM) in our performance reasoning framework. In this reasoning

Model-Driven Performance Analysis 141

framework, interpretation starts with an ICM model and produces a perfor-
mance model that can then be analyzed by different evaluation procedures.

4.1 Performance Metamodel

The performance metamodel (Figure 5) is based on the method for analyzing
the schedulability of tasks with varying priority developed by Gonzalez Harbour
et al. [8]. In this method, a task is a unit of concurrency such as a process or
a thread. Tasks are decomposed into a sequence of serially executed subtasks,
each of which has a specific priority level and execution time.

Fig. 5. Performance metamodel (notation: UML)

The root element of a performance model in our reasoning framework is Per-
formanceModel, which contains one or more Tasks. Unlike in the method by
Gonzalez Habour et al., where all tasks are periodic, in our metamodel a task is
either a PeriodicTask or an AperiodicTask. Periodic tasks are characterized by
a period and an offset that is used to model different task phasings at startup.
Aperiodic tasks, on the other hand, are tasks that respond to events that do not
have a periodic nature. For that reason, they have an interarrivalDistribution to
describe the event arrival distribution. For example, the events may follow an ex-
ponential distribution where the mean interarrival interval is 10ms. The SSTask
models aperiodic tasks scheduled using the sporadic server algorithm [9], which
allows scheduling aperiodic tasks at a given priority while limiting their impact
on the schedulability of other tasks.

142 G.A. Moreno and P. Merson

Tasks do not have an explicit execution time attribute because their compu-
tation is carried out by the subtasks they contain. Thus, each Subtask has an
execution time and a priority level. The metamodel supports both constant and
random execution times by providing different kinds of Distribution. The task
is the unit of concurrency. That is, tasks execute in parallel—subject to a fixed
priority scheduling policy—and within a task there is no concurrency.

4.2 From ICM to Performance Model

As depicted in Figure 2, the interpretation that generates the analysis model
can only be carried out if the analytic constraints of the reasoning framework
are satisfied by the design. The assumptions and analytic constraints of the
performance reasoning framework are the following.

1. The application being analyzed executes in a single processing unit (i.e., in
one single-core CPU or in one core of a multi-core CPU).

2. The runtime environment uses fixed-priority preemptive scheduling.
3. Components perform their computation first and then interact with other

components.
4. Each sink pin in a component reacts with all the source pins in the reaction.
5. No two subtasks (or equivalently, sink pins) within a response can be ready

to execute at the same time with the same priority level.
6. Priority of mutex sink pins is assigned according to the highest locker pro-

tocol.
7. Components do not suspend themselves during their execution.

Even though some of these constraints may seem too restrictive, they are the re-
sult of a process called co-refinement [10], a process that evaluates the tradeoffs
between constraints imposed on the developers, the cost of applying the tech-
nology, and the accuracy of the resulting predictions. For example, constraint 3
makes the interpretation simpler because it does not require looking into the
state diagram of the component, and also makes the use of the technology sim-
pler because it requires fewer annotations to be provided by the developer.

The ICM and the performance model are different in several aspects. For
example, the ICM can model a complicated network of computational elements,
while the performance model only supports seemingly isolated sequences of them.
The rest of this section describes the concepts guiding the transformation from
ICM to performance model.

An event is an occurrence the system has to respond to. The tick of an internal
clock and the arrival of a data packet are examples of events. A response is the
computational work that must be carried out upon the arrival of an event [4].
The main goal of the performance reasoning framework is to predict the latency
of the response to an event, taking into account the preemption and blocking
effects of other tasks. In an ICM, a source of events is represented as a source
pin in a service (i.e., a ServiceSourcePinIcm). Therefore, the goal translates
into predicting the latency of all the components that are connected directly or
indirectly to that service source pin. Since the response to an event is modeled as

Model-Driven Performance Analysis 143

Fig. 6. Response with concurrency

a task in the performance model, it follows that for each ServiceSourcePinIcm
in the ICM, a Task needs to be created. Depending on the event interarrival
distribution of the service source pin, the task will be a PeriodicTask or an
AperiodicTask.

The next step, and the most complex one, is transforming a possibly multi-
threaded response involving several components into a sequence of serially ex-
ecuted subtasks. This transformation deals with two main issues: the internal
concurrency within a response, and the blocking effects between responses.

Concurrency within a Response. Figure 6 shows an example of a response with
concurrency. Component A asynchronously activates components B and C. Since
B and C can execute concurrently, it seems they cannot be serialized as a se-
quence of subtasks. However, because they have different priorities, they will
actually execute serially,2 first the high priority component C and then the low
priority component B, even when they are ready to execute at the same time.
Thus, it is possible to determine the sequence of subtasks that represents the
actual execution pattern. In order to do that, the design has to satisfy one an-
alytic constraint: each threaded component has to be assigned a unique priority
within the response. This is a sufficient but not necessary constraint because
two components can have the same priority as long as they are never ready to
execute at the same time. The interpretation algorithm flags situations where
priority level sharing is not allowed.

Blocking between Responses. In Figure 7 there are two responses that use a
shared component. Since this component is not reentrant, the responses can
potentially block each other. This blocking is addressed in the performance model
by using the highest locker protocol [4]. The shared component is assigned a
priority higher than the priority of all the components using it. In addition, the
component must not suspend itself during its execution. The benefit of these
analytic constraints is twofold. First, they make the behavior more predictable
because calling components are blocked at most once and priority inversion is
bounded. Second, the non-reentrant component can be modeled as a subtask in
2 The analysis assumes the application runs in one processing unit (constraint 1). There-

fore, threads that are logically concurrent are executed serially by the processor.

144 G.A. Moreno and P. Merson

Fig. 7. Blocking between responses

each of the responses. There is no need to have special synchronization elements
in the model because the highest locker protocol and the fixed-priority scheduling
provide the necessary synchronization.

Interpretation is a model transformation that translates from the ICM meta-
model to the performance metamodel. This transformation has been imple-
mented both using a direct-manipulation approach with Java and the Eclipse
Modeling Framework (EMF), as well as with the ATL model transformation lan-
guage [11]. Details of both implementations are beyond the scope of this paper.

5 Performance Analysis

The performance model produced by interpretation can be analyzed with a va-
riety of evaluation procedures ranging from sound performance theories, such
as RMA to efficient discrete-event simulators. The reason for this flexibility is
twofold. First, the evaluation procedures need neither be able to handle asyn-
chronous calls nor keep track of call stacks because interpretation translates
responses involving both into a sequence of serially executed subtasks. Second,
evaluation procedures do not need an explicit notion of synchronization between
tasks other than that resulting by virtue of the fixed priority scheduling.

Depending on its characteristics, a given performance model can be analyzed
by some evaluation procedures and not by others. For example, models with
unbounded execution or interarrival time distributions can be handled by a
simulation-based evaluation, but not by worst-case analysis like RMA. For this
reason, different evaluation procedures may dictate adhering to additional an-
alytic constraints. In most cases, this is not a limiting constraint, but rather
an enabler for predictability. For instance, when developing a system with hard
real-time requirements where RMA will be used to predict worst-case response
time, one should avoid designing responses with unbounded execution time.

Model-Driven Performance Analysis 145

The rest of this section describes the different evaluation procedures used in
our performance reasoning framework. Some of them are third-party tools and
have their own input format. In such cases, the performance model is translated
to the particular format before it is fed to the tool for evaluation.

5.1 Worst-Case Analysis

Worst-case analysis predicts the worst-case response time to an event in the
system by considering the maximum execution time of the components and the
worst preemption and blocking effects. Worst-case analysis in the performance
reasoning framework is carried out with MAST, a modeling and analysis suite for
real-time applications [12]. Among other techniques, MAST implements RMA
with varying priorities [8].

5.2 Average-Case Analysis

Average-case analysis computes the average response time to an event. Although
this is achieved by discrete-event simulation in most cases, the performance
reasoning framework also includes an analytic average-case analysis.

Simulation-based average-case analyses simulate the execution of a system
taking into account the statistical distribution of interarrival and execution
times. By collecting the simulated response time to thousands of arrivals, they
can compute the average response time. In addition, they keep track of the best
and worst cases observed during the simulation.

The performance reasoning framework supports three different simulation-
based average case latency predictions. One of them is with Extend, a commercial
general-purpose simulation tool that supports discrete-event simulation [13]. The
simulation model is built out of custom blocks for Extend that represent the
concepts in the performance model (i.e., tasks, subtasks, etc.). The Extend-based
simulation can model several interarrival distributions and is able to simulate
sporadic server tasks. Another simulation analysis is based on a discrete-event
simulator called qsim. Being a special-purpose simulator, qsim is very efficient
and is able to run much longer simulations in less time. The last of the simulation-
based analyses uses Sim MAST, a simulator that is part of the MAST suite.
Sim MAST can simulate a performance model providing statistical information
about the response time to different events.

The analytic average case analysis in the performance reasoning framework
uses queuing and renewal theory to compute the average latency of a task sched-
uled by a sporadic server [5]. Although this method requires specific constraints
such as exponential interarrival distribution, it provides an envelope for the av-
erage latency without the need to run long simulations.

6 Example

Figure 8 shows a screenshot of the PSK showing the CCL design diagram for a
simple robot controller. The controller has two main components that execute

146 G.A. Moreno and P. Merson

Fig. 8. Component and connector diagram for controller

periodically. The trajectory planner executes every 450ms and takes work orders
for the robot. Using information from the position monitor, it plans a trajectory,
translating the orders into subwork orders that are put into the repository. The
movement planner, on a 150ms period, takes orders from the repository and
converts them into movement commands for the two axes. The responses to
these two periodic events have hard deadlines at the end of their period.

When the performance reasoning framework is called, the user selects the
desired evaluation procedure and enters some analysis parameters. After that,
the design model is transformed to a performance model, which is then eval-
uated. Figure 9 shows the performance model created from the design of the
robot controller. As previously described, the performance model does not have
concurrency within the responses to the different events, and it does not involve
explicit synchronization between the responses. Figure 10 shows the results of
a worst-case latency analysis using MAST. In this particular case, the result
viewer indicates that the response to the 450ms clock is not schedulable because
it has a worst-case execution time that overruns its period.

7 Related Work

There has been recent work in integrating performance analysis into model-
driven development approaches [14,15,16]. Here we describe the similarities and
differences with some of them. Woodside et al. [17] and Grassi et al. [14] have

Model-Driven Performance Analysis 147

Fig. 9. Generated performance model for controller

proposed intermediate models—CSM and KLAPER respectively—to reduce the
semantic gap between the design models and the analysis models and enable the
use of analysis tools with different design languages. In that regard, ICM has
the same intent. However, ICM is only one element in our reasoning framework,
serving as an input meta-model for one of the key elements in the reasoning
framework, namely, the interpretation that transforms the design into a perfor-
mance model. Since our approach uses two meta-models, they are respectively
closer to the start and end of the model-driven analysis process. For instance,
ICM is closer to the component and connector view of the architecture than
CSM and KLAPER. And the performance meta-model we use is close to the
input needed by evaluation procedures based on RMA. An important contri-
bution of our reasoning framework is the interpretation, which transforms the
intermediate model into a performance model with simple semantics that can be
analyzed by different procedures, including those that do not directly support
rich semantics such as forking, joining, and locking.

D’Ambrogio [15] describes a framework to automate the building of perfor-
mance models from UML design models. The approach uses meta-models to
represent the abstract syntax of source and target models and then describe the
transformation from one to the other using a model transformation language.

148 G.A. Moreno and P. Merson

Fig. 10. Analysis results for the controller

This approach does not use intermediate models to reduce the semantic distance
between source and target models.

Gilmore and Kloul [18] do performance modeling and prediction from UML
models that include performance information in the transition labels of the state
diagrams. They use performance evaluation process algebra (PEPA) [19] as an
intermediate representation of the model. A key difference with our work is
that our reasoning framework focuses on fixed-priority preemptive scheduling,
making it suitable to analyze hard real-time systems. PEPA, on the other hand,
assumes activities with exponentially distributed duration, whose memoryless
property allows to treat preemption-resume scenarios as preemption-restart with
resampling [20]. This approach is not suitable for real-time systems where more
determinism is required.

Becker et al. [21] use the Palladio Component Model (PCM) to model compo-
nent-based architectures including the information necessary for performance
prediction. PCM is much more detailed than the ICM. For instance, component
interfaces are first-class elements of the metamodel because they are used to
check whether the connections between components through required and pro-
vided interfaces are valid. The elements closest to interfaces in ICM are sink and
source pins. They are not associated with a type or service signature because it is
assumed that the validity of the connection has already been established at the
architecture description level–the CCL specification in our case. PCM also allows
modeling the behavior of the component as far as necessary–an approach called
gray-box–to determine the way required services and resources are used. This
includes modeling parameter dependencies, loops, and branching probabilities.
In ICM all the required services are assumed to be used exactly once for every in-
vocation of the component. Certainly, compared to ICM, PCM allows modeling
more details, that in turn means making fewer assumptions. However, to the best

Model-Driven Performance Analysis 149

of our knowledge, the complete details in PCM models cannot be automatically
generated and PCM models can only be evaluated by simulation. In contrast
ICM models are automatically generated from architecture descriptions and can
be analyzed not only by simulation but also by a sound performance theory
for worst-case response time and schedulability. Also, the simulation framework
used with PCM does not support priority-based preemptive scheduling.

Analytic constraints play an important role in our approach because they
define the space of designs that are analyzable by the reasoning framework. This
characteristic is also present in the work of Gherbi and Khendek [16] where OCL
is used to specify the constraints and assumptions of the schedulability analysis.

8 Conclusions

We began to work in the performance reasoning framework circa 2001. The
initial versions had limited analysis capability, but successful validation of the
predictions revealed great potential. More recently, we have expanded the space
of analyzable systems by incorporating and adapting performance theories and
diversifying the set of tools used in the evaluation procedure. In this process
we found that creating metamodels and model transformations greatly reduced
complexity in the reasoning framework implementation.

The performance reasoning framework has been applied successfully in several
industry scenarios [22,23,24] and has proven to be very useful for early adopters
of this technology. In maintenance scenarios, model-driven analysis is also useful.
The performance annotations of the components in the architecture description
can be changed to reflect the intended modifications and a new run of the analysis
can verify whether the modifications will yield the required performance.

The performance reasoning framework is packaged as an Eclipse plug-in and
can be used with different design languages thanks to the ICM metamodel and
design-to-ICM adapters. A simple architecture description with structural infor-
mation (wiring of components and connectors through synchronous and asyn-
chronous ports) and performance annotations (e.g., priority, execution time) is
the input for performance analysis. ArchE [25], an architecture expert tool, is
an example of an Eclipse-based tool that has been adapted to use the reasoning
framework. The PSK is a fully automated solution that includes the perfor-
mance reasoning framework and uses CCL as the design language, providing a
comprehensive MDE solution: the same architecture description enhanced with
behavior information can also be used as input for code generation. An impor-
tant consequence is that conformance between the code, the architecture and
the analysis results is maintained.

Architecture description languages that have explicitly considered the charac-
teristics of an application domain or the business needs of adopting organizations
have been more successful [26]. The CCL language was designed to support
the development of component-based safety-critical real-time systems, and its
semantics are close to the target runtime environment. As a result, annota-
tions that express the properties of components and connectors are simpler—by

150 G.A. Moreno and P. Merson

contrast, a UML generic component or assembly connector would require
extensive stereotyping and far more annotations to express the same things.

The performance reasoning framework continues to evolve. Working with aca-
demic and industry collaborators, we plan to extend the space of analyzable
systems by relaxing some of the current analytic constraints. Integration with
other performance analysis tools is also a goal. A limitation of our performance
reasoning framework is that execution time variations caused by branching are
only represented by the resulting execution time distributions. Since CCL and
other design languages can express the behavior inside components, future work
intends to overcome that limitation by having the interpretation look inside the
state machine of the components, perhaps using a gray-box approach as in PCM,
but trying not to hinder the automation or ability to analyze the model by means
other than simulation.

References

1. Schmidt, D.: Model-driven engineering. IEEE Computer Magazine 39(2) (2006)
2. Ivers, J., Moreno, G.A.: Model-driven development with predictable quality. In:

Companion to the OOPSLA 2007 Conference (2007)
3. Bass, L., Ivers, J., Klein, M., Merson, P.: Reasoning frameworks. Technical Report

CMU/SEI-2005-TR-007, Software Engineering Institute (2005)
4. Klein, M.H., Ralya, T., Pollak, B., Obenza, R., Gonzalez Harbour, M.: A practi-

tioner’s handbook for real-time analysis. Kluwer Academic Publishers, Dordrecht
(1993)

5. Hissam, S., Klein, M., Lehoczky, J., Merson, P., Moreno, G., Wallnau, K.: Per-
formance property theories for predictable assembly from certifiable components
(PACC). Technical Report CMU/SEI-2004-TR-017, Software Engineering Institute
(2004)

6. Gamma, E., Beck, K.: Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Addison-Wesley, Reading (2003)

7. Wallnau, K., Ivers, J.: Snapshot of CCL: A language for predictable assembly.
Technical Note CMU/SEI-2003-TN-025, Software Engineering Institute (2003)

8. Gonzalez Harbour, M., Klein, M., Lehoczky, J.: Timing analysis for fixed-priority
scheduling of hard real-time systems. IEEE Trans. Softw. Eng. 20(1) (1994)

9. Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic task scheduling for hard real-time
systems. Real-Time Systems 1(1) (1989)

10. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Enabling predictable assembly.
Journal of Systems and Software 65(3), 185–198 (2003)

11. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Briand, L.C., Williams,
C. (eds.) MoDELS 2005. LNCS, vol. 3713. Springer, Heidelberg (2005)

12. Gonzalez Harbour, M., Gutierrez Garcia, J.J., Palencia Gutierrez, J.C., Drake
Moyano, J.M.: MAST: Modeling and analysis suite for real time applications. In:
The 13th Euromicro Conference on Real-Time Systems (2001)

13. Krahl, D.: Extend: the Extend simulation environment. In: WSC 2002: Proceedings
of the 34th Winter Simulation Conference (2002)

14. Grassi, V., Mirandola, R., Sabetta, A.: From design to analysis models: a kernel
language for performance and reliability analysis of component-based systems. In:
5th International Workshop on Software and Performance (2005)

Model-Driven Performance Analysis 151

15. D’Ambrogio, A.: A model transformation framework for the automated building of
performance models from UML models. In: 5th International Workshop on Soft-
ware and Performance (2005)

16. Gherbi, A., Khendek, F.: From UML/SPT models to schedulability analysis: a
metamodel-based transformation. In: Ninth IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing (2006)

17. Woodside, M., Petriu, D., Petriu, D., Shen, H., Israr, T., Merseguer, J.: Perfor-
mance by unified model analysis (PUMA). In: 5th International Workshop on
Software and Performance (2005)

18. Gilmore, S., Leila, K.: A unified tool for performance modelling and prediction.
Reliability Engineering and System Safety 89(1), 17–32 (2005)

19. Hillston, J.: Tuning systems: From composition to performance. The Computer
Journal 48(4), 385–400 (2005) (The Needham Lecture paper)

20. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process
Algebra-based Approach to Performance Modelling. In: Haring, G., Kotsis, G.
(eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)

21. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the palladio component model. In: WOSP 2007: Proceedings of the 6th Interna-
tional Workshop on Software and Performance, pp. 54–65. ACM, New York (2007)

22. Hissam, S., Hudak, J., Ivers, J., Klein, M., Larsson, M., Moreno, G., Northrop,
L., Plakosh, D., Stafford, J., Wallnau, K., Wood, W.: Predictable assembly of
substation automation systems: An experiment report, second edition. Technical
Report CMU/SEI-2002-TR-031, Software Engineering Institute (2003)

23. Larsson, M., Wall, A., Wallnau, K.: Predictable assembly: The crystal ball to soft-
ware. ABB Review (2), 49–54 (2005)

24. Hissam, S., Moreno, G.A., Plakosh, D., Savo, I., Stelmarczyk, M.: Predicting the
behavior of a highly configurable component based real- time system. In: ECRTS
2008: Proceedings of the 20th Euromicro Conference on Real-Time Systems. IEEE
Computer Society, Los Alamitos (2008)

25. Bachmann, F., Bass, L.J., Klein, M., Shelton, C.P.: Experience using an expert sys-
tem to assist an architect in designing for modifiability. In: 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA) (2004)

26. Medvidovic, N.: Moving architectural description from under the technology lamp-
post. In: 32nd Euromicro Conference on Software Engineering and Advanced Ap-
plications (2006)

Architectural Specification and Static Analyses

of Contractual Application Properties�

Guillaume Waignier, Anne-Françoise Le Meur, and Laurence Duchien

Université Lille 1 - LIFL CNRS UMR 8022 - INRIA
40, avenue Halley - Bât. A, Park Plaza

59650 Villeneuve d’Ascq, France
{Guillaume.Waignier,Anne-Francoise.Le-Meur,Laurence.Duchien}@lifl.fr

Abstract. Being able to specify and verify contractual application prop-
erties at the architecture level allows architects to build better archi-
tected and more reliable systems.

In this paper, we propose a model-based framework for designing con-
tractualized architecture, independently of any paradigm (components or
services). It enables a software architect to express the structural, behav-
ioral, dataflow and QoS properties of his/her application. Our framework
composes these properties in order to compute and check the properties
of the assemblies incrementally. This allows architects to see the influ-
ence of their design decisions on the quality of his/her architecture and
thus helps them to better design their systems architecture.

1 Introduction

Specifying software architectures has become a central and crucial activity in
the design of complex and distributed systems. At design-time, software archi-
tects care about specifying the composition of the necessary functionalities, e.g.,
components or services, to form the desired system, as well as verifying that
the resulting assembly is coherent in order to maintain a certain level of system
integrity.

System integrity relies on many kinds of properties. Typical properties are
concerned with the structural and behavioral relationships among components or
services. These properties are important because they allow architects to capture
and understand the dependencies between the various components. Architects
may also need to reason about quality properties, such as performance, security,
reliability, etc. Finally, some requirements may concern the properties of the
exchanged data, such as their values on the dataflow. However these information
are rather used at runtime.

It is extremely important to identify early in the system development pro-
cess that some component dependencies are incoherent or that a given quality
property cannot be satisfied. Because systems are large and exhibit complex in-
teractions, it is unrealistic to expect a software architect to be able to perform
� This work was partially funded by the French ANR TL FAROS project.

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 152–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Architectural Specification and Static Analyses 153

global compositional reasoning or to predict the overall architecture properties
just on the basis of component properties. To provide architects with some sup-
port with respect to this issue, software architecture description languages are
often coupled with analysis tools.

There exist several architecture description languages (ADLs) [1]. Each ADL
has been designed to support the description and analysis of specific character-
istics of a system’s architecture. Consequently, an ADL is often tied up with its
associated component or service model, which means that the design of an archi-
tecture is dependent of the underlying platform and must thus be re-thought and
re-analyzed if the architecture shall be implemented on another platform. Some
generic ADLs exist, such as Acme/Armani, but they mainly support the analysis
of structural properties. Furthermore, to the best of our knowledge, there ex-
ists no ADL that supports structural, behavioral, dataflow and QoS application
contraint specifications, and no associated analysis tools that enable the static
global resolution of these contractual specifications over an architecture.

In this paper, we propose a framework to specify and analyze component
or service-based architectures, independently of any given underlying platform.
With this framework, a software architect can describe the configuration of
his/her architecture using our structural model, which includes commonly used
architectural elements, and can specify contractual application properties which
capture the requirements on the structure, the behavior, the dataflow and the
QoS of the application. These contractual specifications are based on the assume-
guarantee paradigm and allow static analysis tools to check their global composi-
tion coherence. Verification can be performed incrementally, as the architecture
elements get connected with each other. Furthermore if global coherence can not
be validated, the specification that can not be satisfied is pointed to the architect.
Overall our framework enhances the quality of the design of an architecture.

The rest of the paper is organized as follows. Section 2 illustrates with an
architecture example the various contractual application specifications that an
architect may need to express and gives an overview of existing approaches to
specifying contracts. Section 3 presents our structural architecture model and
its associated application contractual specifications are described in Section 4.
Section 5 explains how specification composition is performed. Section 6 explains
how platform-specific architecture characteristics can be handled in our model
and presents the limitation of our approach. Finally Section 7 presents some
related work and Section 8 concludes and provides some future work.

2 Example

To illustrate the design of an architecture with contracts, we use an example
of architecture in the context of the French Personal Health Record system
(PHR) [2]. We present the scenario and express the application specific properties
that the software architect would like to be able to specify in order to design
a more reliable PHR system. Finally, we illustrate through this example the
capabilities and lacks of actual approaches for the design of safe architectures.

154 G. Waignier, A.-F. Le Meur, and L. Duchien

2.1 Overview of the PHR Example

PHR is the French personal health record system that will be able to provide
health-care professionals with the information needed for their patients care.
Figure 1 represents a possible architecture of the PHR system. All medical in-
formation, (such as biological analyses, X-rays, medications, etc.), will be stored
in distributed databases (Access) and will be made accessible through an on-line
interface (Client).

The first requirement of this system architecture is related to authentication
issues. Indeed, of course, not everybody should have access to anybody’s health
records. The architecture of this system must thus provide some authentication
mechanism. The Authentication architecture element logs a health-care profes-
sional in and returns a session ticket through the functionality getTicket that
is offered by SessionServer. For security reason, the functionality getTicket can
be used only by the element Authentication to avoid that an unauthenticated
user get a session ticket. Finally the session ticket must be validated by the
SessionServer before retrieving any medical data from the database.

The second requirement is the high reliability of the system. Such system has
to be able to handle very heterogeneous medical information, going from light-
weight text records to gigabytes of echographies. Furthermore, the devices used
to display this information are also heterogeneous. They range from desktop
computers with high-quality large-screen monitors and gigabyte network con-
nexions to simple PDAs with small screens and low-bandwidth GPRS network
connexion. Handling such data in a reliable way is critical because the system
must be able to determine if a given data can be displayed appropriately with
no loss of information, as well as in which time-frame, depending on the avail-
able resources and amount of information to display. Consequently, to enhance
the reliability of the system, it is important to be able to take into account at
design-time the device profiles and the type of the exchanged data.

2.2 PHR System Application Properties

The structure of the PHR system is shown in Figure 1. To design a more reliable
PHR system, the architect needs to specify some application properties : one
structural property, nine behavioral properties, four properties on the dataflow
and one QoS property.

For security reason, the software architect needs to be able to add a structural
property on the functionality getTicket of the architectural element SessionServer
in order to restraint its use to the element Authentication.

For authentication reason, the architect has to express that the session ticket
must be validated by the functionality checkTicket of the element SessionServer
before calling the functionality getData in one of the Access elements. To do so,
he/she needs to specify a behavioral property on each architectural element in
order to describe their patterns of interaction with the environment, i.e., their
workflow. Theses properties can also be used to check that the overall behaviour
of the PHR system has no deadlock.

Architectural Specification and Static Analyses 155

Fig. 1. PHR’s architecture

For reliability reason, the software architect wants to be assured that the
device of the health-care professional never receives medical data that violate
its profile and leads to its dysfunction. To do so, he/she needs to express some
properties on the dataflow. He/she would like to specify that the medical data
received by the Client is smaller than 100Mb and of type JPG, that the ele-
ments Access only send JPG medical data, and that the element GlobalSearch

propagates medical data without modifying them.
For performance reason, the software architect needs to capture the fact that

health-care professionals should not wait more than 10s the reception of medical
data.

If the consistency of these application properties can not be guaranteed stat-
ically, due to a lack of information at design-time, the software architect would
like to know what the inconsistencies are and when they appear as early as pos-
sible in the dataflow. With this information, the architect will be able to create
a more responsive PHR system when property violation arises.

2.3 Specifying Application Properties with Existing ADLs

To best of our knowledge, there does not exist any ADL that handles all the
kinds of properties that are needed by the PHR system. Table 1 presents an
excerpt of some ADLs and classifies them according to the choices used to ex-
press the properties. Indeed, each ADL focuses on one specific aspect. Some

Table 1. Support of properties in ADLs

Fractal, Wright SOFA, Acme / Confract SafArchie WebService
CCM, SCA Fractal-BPC Armani

Structure n/a Style n/a Armani n/a Type n/a
language

Behaviour n/a CSP [3] Behavioral protocol n/a SFSP [4] BPMN/BPEL
Dataflow n/a n/a n/a pre/post pre/post pre/post n/a

conditions conditions conditions
QoS n/a n/a n/a n/a n/a n/a SLA

156 G. Waignier, A.-F. Le Meur, and L. Duchien

ADLs and components models, such as Fractal [5], CCM [6] or SCA [7], are
not concerned about the definition of application properties. The expression of
application structural properties is present in many ADLs in different forms.
They correspond to architectural styles in Wright [8], types of components in
SafArchie [4] and a first order predicate logic language in Acme/Armani [9].
The specification of behavioural properties is well supported by ADLs, such as
Wright, SOFA [10] or SafArchie, that care about providing some static guaran-
tees, i.e., deadlock detection. Some works have backported existing behavioral
verification tools from other ADLs. For example, the BPC extension of Fractal
is a rewrite of the support of behavioral protocol of SOFA. The specification of
dataflow properties is less commonly offered. Dataflow specification is realized
with pre and post-condition in Confract [11], Acme/Armani or SafArchie. Never-
theless, this kind of specification is not used at design-time to inform the software
architect of the potential violation. For example, in Confract, this specification is
directly transformed into executable assertions. Finally, few components model
support the specification of QoS properties. WSLA [12] enables QoS specifica-
tions to be added on Web service description.

We propose a framework to capture and verify application properties. The
architect improves the structural description of his/her architecture by writing
the corresponding contractual specifications. These specifications are used to
inform the architect if the desired level of application architecture integrity can
be satisfied.

3 Designing the Structure of an Application Architecture

A well-known definition of the term software architecture is proposed by the
IEEE Standards Association Systems: ”Architecture is defined by the recom-
mended practice as the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the
principles governing its design and evolution.“ Although there is no universal
definition, it is commonly accepted that the specification of a software archi-
tecture describes at least the entities contained in the architecture, which may
be components or services depending on the paradigm used, as well as the re-
lationships between these entities. Consequently, after studying many existing
ADLs, we have chosen to describe the structure of a software architecture with
five architectural concepts, common to component-based and service-oriented
paradigms, and with which architects are familiar.

The architectural concepts available in our approach to an architect to de-
scribe the structure of an application are shown in Figure 2. An Entity is a
computational element or a data store of a system, it is a component in an
component-based architecture or a service in a service-oriented architecture. A
Connector describes the interactions between entity, it is equivalent to a bind-
ing in many component-based approaches or a partnerLink in service-oriented
architecture. A CommunicationPoint is an element of an entity that enables the
entity to communicate with its environment, i.e., the other entities. It is called a

Architectural Specification and Static Analyses 157

Fig. 2. Structural meta-model

port or interface in a component-based architecture and a portType in a service-
oriented architecture. A CommunicationElement is an action. It can be called
operation in some component models and service-oriented approaches. An argu-
ment is the element exchanged between the entity. It can be a typed object or a
message.

Furthermore, we offer the possibility of hierarchically organizing entities by
distinguishing primitive entities from composite entities. A primitive entity is a
basic computational element, it can be viewed as a black box. A composite entity
defines a given assembly of primitive and composite entities, it is equivalent to
a composite component or can be seen as an orchestration.

Moreover, communication points must be provided or required, depending
on whether they offer or require functionalities. The communication protocol of
the communication elements are described with an automaton. It expresses the
order of the sending and reception of the arguments. It can be used to specify
synchronous or asynchronous communication protocols.

Finally, we have constrained our structural meta-model with some OCL [13]
invariants in order to perform a minimal set of checks to guarantee that the
architecture is well-formed. For example, we check the strict encapsulation of
sub-entities or make sure that a connector is between a provided and a required
communication points. We have reduced the number of these structural checks
to its minimum. All the other constraints, may they be structural, behavioral,
etc., are considered application specific, and will be specified by the architect to
satisfy his/her application context.

4 Contractual Specifications

In section 2 we have highlighted the application properties that the architect
would like to capture and verify at the architecture level. In this section, we
present the different contractual specifications that an architect can write in our
approach. Section 5 will explain how these specifications can be used to inform
the architect if the desired level of application architecture integrity is satisfied.

158 G. Waignier, A.-F. Le Meur, and L. Duchien

4.1 Definition

A contractual specification is always associated to a participant P and relies on
the assume-guarantee paradigm [14] such that

– assume(P) makes explicit what application properties P requires from its
environment, i.e., everything that interacts with P .

– guarantee(P) makes explicit what properties P offers to its environment.

Based on the specification of these assume and guarantee properties, it will be
possible to determine if the overall architecture satisfies all these properties such
that assume(P) → guarantee(P), where the operator → is a form of logical
implication that expresses the fact that if assume(P) is true then guarantee(P)
is true [14].

This assume-guarantee approach has often been used in the context of QoS
[12,15]. We generalize the use of this approach to the specification of structural,
behavioral and dataflow contractual properties. Accordingly, a software archi-
tect can associate four kinds of contractual specifications on his/her architecture:
structural specifications to constrain the structure of his/her architecture; be-
havioral specifications to describe the synchronization of the entities, i.e., their
workflow; dataflow specifications to restrict the values of the arguments in the
dataflow; and QoS specifications to capture the entity extra-functional proper-
ties, such as the expected response-time.

All of these specifications are application specific and will be composed and
analyzed to verify that the application architecture satisfies all the desired prop-
erties. The next sub-sections present these specifications, which are illustrated
in the context of our PHR application example.

4.2 Structural Specification

Structural specifications are associated to communication points and allow the
architect to express the structural requirements of his/her application. Their def-
inition are expressed using the OCL language, which is a language well-known
by software architects. We constrain the use of OCL to its invariants and pro-
vide a new keyword other, which makes reference to the other communication
points that the contextual communication point, i.e., the communication point
that carries the structural specification. The architect only expresses application
structural requirements, which corresponds to specifying an assume expression
in order to constrain the possible connections of a given communication point.

PHR Example. To express the structural property presented in Section 2.2,
i.e., that the communication point getTicket of the entity SessionServer should
only be used by the entity Authentication, the software architect can attach the
following structural specification S1 to the communication point getTicket:

S1 on SessionServer.getTicket : assume other.entity.name=‘‘Authentication’’

Architectural Specification and Static Analyses 159

Fig. 3. Workflow meta-model

4.3 Behavioral Specification

Behavioral specifications are associated to communication points and allow the
architect to capture the behavior of his/her architecture entities by describing
the workflow going in and out of the communication points of these entities. They
can be either an assume or a guarantee expression. The guarantee describes the
behavior that the entity respects and the assumption expresses the behavior that
the entity requires. The software architect can describe these specifications with
the SFSP language or by designing a workflow conformed to the meta-model
shown in Figure 3. The basic activities represent the sending or the reception
of an argument and the control flow operators can be of three types: sequence,
alternative or parallel.

PHRExample. We focus on the workflowthat involves the entities GlobalSearch
and Access and specify the assume and guarantee expressions to express the re-
quirements presented in Section 2.2. For example the guaranteed behavior of the
entity Access at the communication point getData is as follows:

B1 on Access.getData : guarantee ?getPicture.URL ; !getPicture.data$

This guarantee B1 attached on the communication point getData of the entity
Access expresses that the communication element getPicture in this communi-
cation point receives (’?’) an argument URL of a medical data and then returns
(’ !’) the argument data in response (’$’). Similarly, the architect expresses the
guaranteed behavior of the entity GlobalSearch:

B2 on GlobalSearch.searchData, GlobalSearch.getData : guarantee

?searchData.searchPicture.URL;!getData.getPicture.URL;

?getData.getPicture.data$;!searchData.searchPicture.data$

The entity Access also requires that the communication element verifyTicket

of the communication point checkTicket of the entity SessionServer be called
before calling its communication element getPicture of its communication point
getData. This can be specified with the following assumption:

160 G. Waignier, A.-F. Le Meur, and L. Duchien

B3 on Access.getData : assume

?SessionServer.checkTicket.verifyTicket.ticket;?Access.getData.getPicture.URL

4.4 Dataflow Specification

Dataflow specifications are associated to the workflow and allow the architect
to restrict the values of the input and output arguments in the flow. Dataflow
expressions are assume expressions when they apply to input argument and
guarantee expressions in the case of output arguments.

PHR Example. To describe the profile of the Client entity presented in Sec-
tion 2.2, the architect can specify the dataflow specifications D1 and D2 as follows:

D1 on Client.searchData : assume searchPicture.data.size<100;

D2 on Client.searchData : assume searchPicture.data.type=JPG;

The architect must also express that the entity Access only returns JPG pictures:

D3 on Access.getData : guarantee getPicture.data.type=JPG;

Finally, it is necessary to specify that the GlobalSearch entity does not modify
the data that it receives:

D4 on GlobalSearch.searchData : guarantee

searchData.searchPicture.data=getData.getPicture.data;

4.5 QoS Specification

QoS specifications cover a wide range of non-functional properties including
performance, security, reliability and availability. Each non-functional property
has its own metric and expression language. To handle this unbound set of
properties, we have introduced the concept of QoS specification type. For each
non-functional QoS property that an architect might want to reason about,
there must exist its corresponding QoS specification type. We provide several
pre-defined QoS specification types and our approach enables one to define new
ones as needed.

A QoS specification is an assume (resp. guarantee) expression if it corre-
sponds to a pre-condition (resp. post-condition) on the value of a non-functional
property. A Qos specification is associated to the workflow.

PHR Example The architect needs to express the requirement that the health-
care professional must receive the medical data before a given maximal time. This
can be done by adding a QoS specification QoS1 of type MaximalResponseTime on
the reception of the data by the communication element searchPicture of the
communication point searchData of the entity Client.

QoS1:MaximalResponseTime on Client.searchData : assume Tmax(searchPicture)<10s

Architectural Specification and Static Analyses 161

Fig. 4. Structural contract meta-model

5 Contractual Specification Composition

In this section, we explain how contracts are automatically computed by compos-
ing the specifications. This computation is generic and independent of any com-
ponent models or service-oriented approach, as it is based on our generic models.
For all kinds of contracts, we describe how the computation is performed. First,
we present the computation of the structural, behavioral, dataflow contracts and
QoS. Then, we discuss about the impact of the order of the composition.

5.1 Contract Computation

In this section, we define how the contractual specifications associated to par-
ticipants are composed to form a contract.

Let c be a participant associated with the contractual specification Specc and
P = {ci, ..., cn} a set of participants. We define the contractual specification
SpecP of the set P as the pair {AP ,GP }, where AP is the assumption and
GP is the guarantee (cf. Section 4). The contract C{P1�P2} resulting from the
interaction of P1 and P2 is computed such that C{P1�P2} = SpecP1•SpecP2 where
• is the specifications composition operator and � is the interaction operator.
The operator • and � are specific for each kind of contractual specification, i.e.,
structural, behavioral, dataflow and QoS. The result of the contract is used to
compute the specification Spec{P1∪P2} incrementally.

5.2 Structural Contracts

The structural contract (cf. Figure 4), which results from the interaction be-
tween a set of required P1 and provided P2 communication points connected
together through a connector, is computed with the operator and of OCL such
that CP1�P2 = {A} where A = AP1 and AP2 . The result of the composition is
an OCL invariant, which can be checked statically by OCL tools.

PHR Example. When the communication point getTicket of SessionServer

is connected with the communication point P of Authentication, the contract
CgetT icket�P is computed by composing the specification S1 (cf. Section 4):

162 G. Waignier, A.-F. Le Meur, and L. Duchien

CcheckTicket�P = P.component.name=‘‘Authentication’’.

This contract is valid.

5.3 Behavioral Contracts

The behavioral contract (cf. Figure 5) resulting from the interaction between
communication points P1 and P2 is computed with the pair of operators {∪, ‖},
where ‖ is the synchronization operator of SFSP, such that CP1�P2 = {A, G}
where A = AP1 ∪ AP2 and G = GP1 ‖ GP2 .

The resulting contract expresses the behavior of the assembly. A behavioral
contract is checked statically in two steps. First, (i) the guarantee of the assembly
must be valid, i.e., there must be no deadlock. Then, (ii) the assumption is
checked, it corresponds to checking the safety properties, i.e., that it is not
possible to enter into an error state.

The resulting contract CP1�P2 becomes the behavioral specification SpecP1∪P2

of the new assembly of entities, called a composite specification (cf. Figure 5).

PHR Example. When the communication points getData of Access and getData

of GlobalSearch are connected together, the contract CgetData�getData is computed
by composing the behavioral specification B1, B2 and B3 (cf Section 4).

guarantee ?GlobalSearch.searchData.searchPicture.URL;

!GlobalSearch.getData.getPicture.URL;?Access.getData.getPicture.URL;

!Access.getData.getPicture.data$;?GlobalSearch.getData.getPicture.data$;

!GlobalSearch.searchData.searchPicture.data$

assume ?SessionServer.checkTicket.verifyTicket.ticket;?Access.getData.getPicture.URL

The behavioral expression that forms the guarantee has no deadlock but
the assumption is not valid. It will be valid when the entity SessionServer

will be taken into account in the assembly. The computed contract becomes
the specifications of the new assembly associated with Access.getData, Global-
Search.searchData and GlobalSearch.getData.

Fig. 5. Behavioral contract meta-model

Architectural Specification and Static Analyses 163

Fig. 6. Dataflow contract meta-model

5.4 Dataflow Contracts

A dataflow contract CP1�P2 results from the composition of the dataflow spec-
ifications SpecP1 and SpecP2 associated to the workflow, such as a sequence or
a reception of an argument (cf. Figure 6). It corresponds to resolving the set of
pre-conditions AP2 , where the post-conditions GP1 are true if P1 appears before
P2 in the workflow. It is similar to a partial validation like in program checking:
CP1�P2 = resolve(AP2) where GP1 is true if P1 is before P2 in the workflow.

To analyse the pre and post-conditions, our approach is similar to [16]. We
attach the specifications on the nodes of the workflow. The output state of a
node is a function of the state of this node entry. The input state of a node
is a function of output state of the above node. The assumptions are resolved
locally knowing the guarantees. The result is the equation CP1�P2 that can be
true, false or not resolvable.

The dataflow contract is used to compute the dataflow specification SpecP1∪P2

of the new workflow, such as shown in Table 2. Guarantees are propagated to
the next nodes using a forward analysis.

Thanks to a backward analysis, the partially valid assumption is propagated
back in the control-flow graph up to the first alternative. It prevents the sys-
tem from entering into an execution path if an assumption in this path is not
respected. Consequently, the software architect can take into account a possible
contract violation at design time, which is detected as soon as possible in the
dataflow path.

Table 2. Composition Operators for dataflow

SpecP1∪P2 Sequence (P1;P2) Parallel (P1 ‖ P2) Alternative (P1 | P2)
= {A, G} where

A = AP1 ∪ CP1�P2 AP1 ∪ AP2 n/a
G = GP1 ∪ GP2 ∪ AP2 GP1 ∪ GP2 GP1 ∪ GP2 ∪ AP1∪ condition

PHR Example. When the architect connect the communication points getData
of Access and getData of GlobalSearch, the workflows of the two entities interact
and produce the dataflow contractCGlobalSearch�Access. It is computed by compos-
ing the dataflow specifications D3 and D4 (cf. Section 4). There is no assumption,

164 G. Waignier, A.-F. Le Meur, and L. Duchien

Fig. 7. QoS Contract meta-model

so the contract is valid. Finally, the specification SpecGlobalSearch∪Access is com-
puted in sequence such that:
on GlobalSearch.searchData;Access.getData :

guarantee GlobalSearch.searchData.data.type=JPG and

GlobalSearch.searchData.searchPicture.data=GlobalSearch.getData.getPicture.data;

When the software architect connect the communication point getData of Client
with getData of GlobalSearch together, the assumptions D1 and D2 are checked
knowing the guarantee SpecGlobalSearch∪Access: SpecClient∪GlobalSearch∪Access =

assume searchPicture.data.size<100.

The assumption D2 (JPG picture) is statically validated, but it is not possible
to guarantee that data size is smaller than 100Mb. Thanks to a backward analysis,
D2 is propagated back in the workflow up to !Access.getData.getPicture.data$.

5.5 QoS Contracts

A QoS contract CP1�P2 results from the composition of the QoS Specifications
SpecP1 and SpecP2 associated to the workflow (cf. Figure 7). It is valid if the
assumption required by the participants is fulfilled by the guarantee provided by
the other participants that are appearing before in the workflow, as in QML [15].

The QoS specification SpecP1∪P2 of the new workflow can be computed incre-
mentally by composing the QoS specifications of P1 and P2. The QoS composi-
tion operators depend on the type of the QoS. Thus, we have defined a model
of QoS type that enables a given QoS expert to create a new type of QoS by as-
sociating for each workflow operator the appropriate QoS composition operator.
For example, [17] defines the QoS composition operators for the maximal and
minimal time estimation and cost estimation (cf. Table 3). The use of the QoS
concept type enables us to separate the definition of QoS composition operators
and the algorithm to traverse the workflow, allowing the support for new QoS
properties.

5.6 Contract Composition Order

Contracts CP1�P2 are computed in the following order: structural, behavioral,
dataflow and then QoS. Specification SpecP1∪P2 , based on these contracts, are

Architectural Specification and Static Analyses 165

Table 3. Example of QoS Composition Operators

SpecP1∪P2 = {A, G} where

Behavioural operators Sequence Parallel Alternative

Maximal Response Time A = sum(AP1 , AP2) A = max(AP1 , AP2) A = max(AP1 , AP2)
G = sum(GP1 , GP2) G = max(GP1 , GP2) G = max(GP1 , GP2)

Minimal Response Time A = sum(AP1 , AP2) A = sum(AP1 , AP2) A = min(AP1 , AP2)
G = sum(GP1 , GP2) G = sum(GP1 , GP2) G = min(GP1 , GP2)

Maximal Cost A = sum(AP1 , AP2) A = sum(AP1 , AP2) A = max(AP1 , AP2)
G = sum(GP1 , GP2) G = sum(GP1 , GP2) G = max(GP1 , GP2)

Minimal Cost A = sum(AP1 , AP2) A = sum(AP1 , AP2) A = min(AP1 , AP2)
G = sum(GP1 , GP2) G = sum(GP1 , GP2) G = min(GP1 , GP2)

Fig. 8. Example of contracts composition

composed incrementally. The relation between these specifications is a tree. The
leafs are the contractual specifications written by the architect and the nodes
are the intermediate contractual specifications. The root is the specification of
the entire architecture (cf. Figure 8). The incremental computation of the spec-
ification allow the recomputation of only the specifications of the modified part
of the architecture, independently of the execution platform.

6 Discussion

This section first explains how plateform-specific properties can be handled in
our model and then gives the limitations of our approach.

6.1 Handling Platform-Specific Properties

Our component model is built from architectural concepts that are common
to many ADLs. However, each component model has its own platform-specific
properties. For example, the notion of communication point compatibility is
model specific, e.g., two communication points are compatible : in Fractal only
if they have the same type; and in CCM if they have the same type and the same
communication protocol (synchronous or asynchronous). These platform-specific
properties can be expressed on our model by writing contractual specifications.
For example, Fractal specifications correspond to the following structural speci-
fication : S fractal on * : assume other.type = self.type.

166 G. Waignier, A.-F. Le Meur, and L. Duchien

These platform-specific properties may be even more complex. For example,
in AADL [18], there exist different types of components, such as Processor,
Memory or Device. Thus some compatibility rules specific to AADL need to be
checked, such as “It is forbidden to connect two Device together”. All of these
rules can be expressed on our model. Specific component types are expressed
with an attribute in the Entity and properties that are specific to these at-
tributes are expressed like any other contractual specifications. Furthermore,
to relieve the architect from having to specialize his/her architecture to sat-
isfy a given ADL each time another platform is considered, we plan to create
platform-specific styles, which contain platform-specific properties that can be
automatically loaded within our model.

6.2 Limitations

Our structural model is less generic than the one of Acme or xADL. Contrary
to Acme or xADL, our model makes explicit the content of a communication
point. It can be required only or provided only and must contain a set of com-
munication elements with typed input/output arguments. Thus our structural
model is compatible with any component model that exhibits bidirectional com-
munication points (in/out or required/provided), which is a characteristic that
is shared by many component models, such as Fractal, CCM, SCA or SOFA.
The component model Unicon [19], however, is not supported since it has 14
kinds of communication points.

We have chosen to design meta-models with strong semantics in order to
make them non-ambiguous, allowing thus analyses to be performed. Indeed the
semantics of communication points must be clear to enable analysis tools to ma-
nipulate them. In Acme/Armani, the content of a communication point, called
port, is not expressed. The only possibility to add information in a communica-
tion point is by defining properties, which have no clear semantics. For example,
it is possible to perform Wright behavioral analysis on an Acme description by
adding some Acme properties containing CSP expressions. However there is no
relationship between these properties and the structure of the architecture. Con-
sequently, it is not possible to guarantee that the messages declared to be sent
or received structurally exist. In our approach, the behavioral meta-model is
strongly associated with the structural meta-model. The sent and the received
messages expressed in the behavioral model correspond to the argument in the
structural model. So, for example, our approach checks that the sent (resp. re-
ceived) messages in the behavioral model correspond to the output (resp. input)
arguments in the structural model.

More generally, we have chosen to have a richer structural meta-model than
Acme or xADL in order to be able to check the coherence between the different
meta-models, i.e., structural, behavioral, dataflow and QoS. In our approach, the
syntactic coherence defined in [20], i.e., the reuse of elements between different
models, is guaranteed by the meta-modeling approach. Each element is a meta-
class and the reuse of elements correspond to the reuse of meta-classes between
the models. For example, the Argument used in the structural model (Figure 2)

Architectural Specification and Static Analyses 167

is exactly the same Argument reused in the behavioral meta-model (Figure 3).
The semantic coherence defined in [20] (i.e., elements are designed using the
“meaning” and interpretation of others elements) is guaranteed by the meta-
modeling approach and the static validation tools. Indeed, each meta-class has
a unique semantics and each concept with a same semantics is represented by a
unique meta-class.

6.3 Implementation Status

We are implementing the tools as an Eclipse plugin. The models are created with
EMF and the OCL constraints are implemented with the OCL-EMF validation
framework.

7 Related Work

We have based the design of our structural model on several works that have
proposed a generic ADL, such as Acme [21], xADL [22] and FIESTA [23], and on
works that have, more recently, unified components and services [7,24]. With our
model, our goal is not to provide yet another model, but to identify a meaningful
subset for the architect to build on and reason about application contractual
specifications.

Our contractual architecture framework, which supports four kinds of con-
tractual specifications, brings together in a uniform way some contract concepts
that were dispatched in various approaches.

Acme/Armani [9] enables the adding of structural constraints on an archi-
tecture and is supported as an extension in AcmeStudio, a graphical user inter-
face for designing an architecture independently on any ADL. However, Acme/-
Armani does not handle behavior specification, and thus is not appropriate for
the design of service-oriented architectures, which focus on behavior description,
i.e., the orchestration.

With respect to behavioral specifications, we use a process algebra similarly like
in many ADLs, such as CSP [3] in Wright, SFSP [4] in SafArchie or FSP [25] in
Darwin. In service-oriented approaches, the behavior is described with BPMN [26]
or BPEL [27]. At a high-level of abstraction, it is similar to an activity diagram,
which can be described with an process algebra. Our current version of the FSM
is not as expressive as CSP or FSP, we have however selected a meaningful subset
by keeping the sequence, alternative and parallel composition operators. Moreover
we offer a rich structural meta-model that enables us to define new behavioral
meta-model representing an existing process algebra.

In [28], the authors express dataflow specifications on an architecture with
Acme/Armani through the use of pre and post-conditions, which are all trans-
formed into executable assertion at runtime. No static analysis is provided in
order to perform partial validation. In our approach, we inform the software
architect at design-time where potential inconsistencies may take place, as early
as possible in the dataflow. This allows the architect to identify at which points

168 G. Waignier, A.-F. Le Meur, and L. Duchien

in the architecture runtime tests should be inserted. Because, these points are
detected at the earliest in the dataflow, the resulting system should be more
reactive to constraints violation.

QML [15] is a QoS specification language that introduces contract types.
A contract type C defines each dimension type within C. A dimension type
specifies a domain for a dimension, which can be a set, an enumeration or a
numeric. However, the static resolution of QML contracts is only local. In our
approach, QoS contracts are composed in order to compute the QoS contract
of the entire architecture. To do so, we have extended the concept of contracts
type of QML by describing also how the contract is composed using a set of QoS
composition operators. A QoS contract composition operator is associated with
each workflow composition operator.

[29] presents the needs for the second generation of ADLs. The second genera-
tion of ADLs must support the three concerns: technology, domain and business.
The technological concern includes means for representing and reasoning about
architectures. The domain concern includes means for representing and reason-
ing about problems in a given domain. The business concern corresponds to
capturing and exploiting knowledge of the business context. Our approach takes
into account the technology concern since it covers a wide range of existing ADLs
and proposes some tools to check structural, behavioral, dataflow and QoS prop-
erties. The domain concern is supported by our approach because it provides a
means to specify application specific-properties. Moreover, models can be per-
sonalized with domain-specific properties, such as the avionic domain properties
expressed in AADL. The business concern is not handled by our approach since
our framework does not offer the generation of components and the deployment
of the system. However we plan to add runtime management to our framework.

8 Conclusion

We have presented a generic framework for designing contractualized architec-
tures. Our approach is based on a generic architecture model and on four models
of contractual specifications that address the structure, behavior, dataflow and
QoS properties of an application. Our architecture model contains few concepts
of communication points compatibility. Instead, compatibility is specified by
the architect by writing contractual specifications to make explicit the applica-
tion properties that he/she would like to capture and verify at the architecture
level. Consequently, the description of the architecture contains only application-
specific constraints. However, in order to check if an architecture is compatible
with a given platform-specific property, platform properties can be also loaded
as contractual specifications into the architecture.

Our framework handles the four kinds of specifications uniformly. Contrac-
tual specifications are based on the assume-guarantee paradigm. This enables
the resolution and the incremental composition of the contractual specifications
at design-time. This approach allows the architect to only verify the specifica-
tions of the modified part of the architecture and enhances the identification of

Architectural Specification and Static Analyses 169

inconsistent or missing specifications. Overall our framework provides the archi-
tect with some support for global compositional reasoning and contributes thus
to the definition of better architectured systems.

In our approach, we have separated the means to describe the architecture,
i.e., the meta-models, from the analysis tools. We provide rich meta-models with
clear semantics that allow architects to create new analysis tools manipulating
our meta-models. This separation enables our approach to be extensible since new
analysis tools can be added without modifying the meta-models and new meta-
models can be added without impacting the existing meta-models and tools.

In the near future, we plan to use our framework at runtime in order to
verify the integrity of the architecture during adaptation. This way, even if the
runtime platform does not handle any kind of contract assertion, the dynamic
architecture will be contractualized since the verifications will be performed, in
a generic way, at the architecture-level.

References

1. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for
software architecture description languages. IEEE Trans. on Software Engineer-
ing 26(1), 70–93 (2000)

2. Nunziati, S.: Personal health record,
http://www.d-m-p.org/docs/EnglishVersionDMP.pdf

3. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(2004)

4. Barais, O., Lawall, J., Le Meur, A.F., Duchien, L.: Safe integration of new concerns
in a software architecture. In: Proceedings of the 13th Annual IEEE International
Conference on Engineering of Computer Based Systems (ECBS 2006), pp. 52–64.
IEEE Computer Society, Los Alamitos (2006)

5. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An open compo-
nent model and its support in Java. In: Crnković, I., Stafford, J.A., Schmidt, H.W.,
Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Heidelberg
(2004)

6. OMG: CORBA Component Model, v4.0, formal/06-04-01 (April 2006)

7. BEA, IBM, Interface21, IONA, Oracle, SAP, Siebel, Sybase: Assembly Component
Architecture - Assembly Model Specification Version 1.00. (March 2007)

8. Allen, R.: A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, CMU-CS-97-144 (January 1997)

9. Monroe, R.T.: Capturing Software Architecture Design Expertise with Armani
(January 2001)

10. Kalibera, T., Tůma, P.: Distributed component system based on architecture de-
scription: The SOFA experience. In: CoopIS 2002, DOA 2002, and ODBASE 2002.
LNCS, vol. 2519. pp. 981–994. Springer, Heidelberg (2002)

11. Collet, P., Rousseau, R.: Efficient Implementation Techniques for Advanced Asser-
tion Languages. RSTI - Série L’Objet (RSTI-Objet) 5(3-4), 417–442 (1999)

12. IBM: WSLA Language Specification, V1.0. (2003)

13. OMG: Object Constraint Language (OCL). 2.0 edn. (May 2006)

14. Abadi, M., Lamport, L.: Composing specifications. ACM 15(1), 73–132 (1993)

http://www.d-m-p.org/docs/EnglishVersionDMP.pdf

170 G. Waignier, A.-F. Le Meur, and L. Duchien

15. Frolund, S., Koisten, J.: QML: A Language for Quality of Service Specification
(1998)

16. Kildall, G.: A unified approach to global program optimization. In: 1st Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(1973)

17. Xiangpeng, Z., Chao, C., Hongli, Y., Zongyan, Q.: A qos view of web service
choreography. In: IEEE International Conference on e-Business Engineering, pp.
607–611 (2007)

18. AS-2 Embedded Computing Systems Committee SAE: Architecture Analysis &
Design Language (AADL). SAE Standards nAS5506 (November 2004)

19. Zelesnik, G.: The UniCon Language Reference Manual (May 1996)
20. Roshandel, R., Medvidovic, N.: Multi-view software component modeling for de-

pendability. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting De-
pendable Systems II. LNCS, vol. 3069, pp. 286–304. Springer, Heidelberg (2004)

21. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Foundations of Component-Based Systems, pp. 47–68. Cam-
bridge University Press, Cambridge (2000)

22. Dashofy, E.M., Van der Hoek, A.V., Taylor, R.N.: A highly-extensible, XML-based
architecture description language. In: Proceedings of the Working IEEE/IFIP Con-
ference on Software Architecture (WICSA 2001). IEEE Computer Society Press,
Los Alamitos (2001)

23. Waignier, G., Le Meur, A.F., Duchien, L.: Fiesta: A generic framework for in-
tegrating new functionalities into software architectures. International Journal of
Cooperative Information Systems (IJCIS) 16(3/4), 367–391 (2007)

24. Van der Aalst, W.M., Beisiegel, M., Van Hee, K.M., König, D., Stahl, C.: An
soa-based architecture framework. International Journal of Business Process Inte-
gration and Management 2(2), 91–101 (2007)

25. Magee, J.: Behavioral analysis of software architecture using ltsa. In: Proceedings
of the 21st international conference on Software engineering, pp. 634–637. IEEE
Computer Society, Los Alamitos (1999)

26. OMG: Business Process Model and Notation (BPMN) 2.0. (June 2007)
27. OASIS: Web Services Business Process Execution Language Version 2.0. (April

2007)
28. Jung, H., Rubio-Medrano, C.E., Wong, W.E., Cheon, Y.: Architectural Assertions:

Checking Architecrural Constraints at Run-Time
29. Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description

from under the technology lamppost. Journal of Information and Software Tech-
nology 49(1), 12–31 (2007)

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 171–188, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Quality-Attribute Reasoning Frameworks in
the ArchE Design Assistant

Andres Diaz-Pace, Hyunwoo Kim, Len Bass, Phil Bianco, and Felix Bachmann

Software Engineering Institute, Carnegie Mellon University
4500 Fifth Avenue, Pittsburgh, PA-15213-2612, USA

{adiaz,hkim,ljb,pbianco,fb}@sei.cmu.edu

Abstract. Techniques and tools for specific quality-attribute issues are becom-
ing a mainstream in architecture design. This approach is practical for evaluat-
ing the architecture in early stages but also for planning improvements for it.
Thus, we believe that one challenge is the integration of the individual capabili-
ties of quality-attribute techniques. This paper presents our research work on
a design assistant called ArchE that, based on reasoning framework technology,
provides an infrastructure for third-party researchers to integrate their own qual-
ity-attribute models. This infrastructure aims at facilitating the experimentation
and sharing of quality-attribute knowledge in both research and educational
contexts.

Keywords: Architecture-based analysis & design, quality attributes, design as-
sistance, ArchE.

1 Introduction

The importance of tackling quality-attribute requirements (e.g., performance, modifi-
ability, reliability and other “non-functional” issues) in early development stages has
been widely recognized by the software community. The software architecture is an
effective instrument to reason about the relationships between design decisions and
quality attributes [4].

One mechanism for modeling quality-attribute issues is via reasoning frameworks.
A reasoning framework [5] is an abstraction to encapsulate the knowledge needed to
understand and estimate the behavior of a system with respect to a particular quality,
so that this knowledge can be applied by non-experts. Having encapsulated models
for quality attributes has advantages in terms of scale and level of detail, because it
helps the architect to manage the relationships among multiple quality-attribute mod-
els when designing an architecture. Ideas of the same kind have been discussed by
other researchers as well [7, 10, 14].

In this context, automated tool support is crucial to take advantage of quality-
attribute knowledge. A particular category of tools is design assistants. A design assis-
tant can be seen as an agent that supports the architect in decision-making, either by
making suggestions on possible courses of action or by performing some computations
autonomously on her behalf. For several years, the Software Engineering Institute

172 A. Diaz-Pace et al.

(SEI) has been developing an assistant for architecture design called ArchE1 [1, 2, 16].
In a nutshell, this prototype performs a semi-automated search of the design space,
using the outputs of reasoning frameworks to direct the search towards solutions with
known quality properties. The initial release of ArchE consisted of a rule-based engine
and examples of reasoning frameworks that allow the user to explore simple architec-
tures for performance and modifiability.

However, the challenge is not only about sound reasoning frameworks able to link
architectures to quality-attribute models individually. In order to fully realize the
potential of this technology, we argue that a design assistant should allow people to
put their own reasoning frameworks to work together. In this paper we describe an
extension of ArchE called ArchE Reasoning Framework Interface (ArchE-RF Inter-
face) to support such an objective. This new release consists of a collaborative infra-
structure for third parties to contribute reasoning frameworks to ArchE as plugin
modules. The approach is based on a blackboard organizational style, in which the
ArchE engine plays the role of control component and the reasoning frameworks
register themselves with ArchE through a publish-subscribe schema. ArchE has no
semantic knowledge of quality-attribute models; it just manages the basic inputs such
as scenarios and responsibilities, delegates the design work to the available reasoning
frameworks, and then assembles their results.

The contribution of this approach is that a researcher can concentrate directly on
the modeling and implementation of a reasoning framework for her quality of interest,
and afterwards instantiate her reasoning framework easily on top of the ArchE-RF
Interface. Furthermore, providing a platform for modular reasoning frameworks that
are ArchE-compatible, we expect to support the development and integrated use of
quality-attribute models by researchers, practitioners and educators.

The rest of the paper is structured around 5 sections. Section 2 describes the key
concepts of the ArchE vocabulary for reasoning frameworks. Section 3 is devoted to
the interactions between ArchE and the reasoning framework plugins using the Ar-
chE-RF Interface. Section 4 briefly describes our experiences implementing two rea-
soning framework examples. Section 5 comments on related work. Finally, Section 6
presents the conclusions and discusses future lines of work.

2 Reasoning Frameworks: The Building Blocks

Conceptually, a reasoning framework is a modular entity that provides the capability to
reason about specific quality-attribute behavior(s) of an architecture. In its original for-
mulation [5], a reasoning framework only involved analytic theories (e.g., queuing net-
works for performance, change impact for modifiability, Markov chains for availability,
etc.) to determine whether an architecture satisfies quality-attribute requirements. Later,
this formulation was extended with the capability to transform an architecture using
tactics [2] in order to satisfy unmet quality-attribute requirements.

The class of behaviors or situations for which the reasoning framework is useful is
referred to as the problem description. A specification of a problem description can be
a collection of scenarios along with an initial architectural model for the system. The

1 http://www.sei.cmu.edu/architecture/arche.html

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 173

analytic theory needs also a representation to abstractly describe those aspects of the
design we should reason about. This representation is referred to as the analysis
model. In this context, a reasoning framework is expected to support three phases [2]:

1. Interpretation: The mapping procedure that converts the architectural model
into the analysis model

2. Evaluation: The procedure used to solve the analysis model and compute qual-
ity-attribute measures for the scenarios. These measures help to determine
whether the current architecture satisfies its scenarios.

3. Re-design (optional): In case some scenarios are unmet, tactics permit to adjust
the structure/behavior of the current architectural model.

To accomplish these phases, the process of building a reasoning framework relies
on a vocabulary of architectural concepts. The key concepts we have used for the
development of ArchE-RF Interface include: general quality-attribute scenarios, con-
crete quality-attribute scenarios, quality-attribute models, responsibilities, architec-
tural tactics, and architectural views. Figure 1 shows the ontology of concepts and the
relationships among them.

General
Quality Attribute

Scenario

Concrete
Quality Attribute

Scenario

instance
of

satisfies 0..*

Quality
Attribute

Model

View

has
parameters
adjustable

by

transforms

Responsibility
Structure

extracted
from 1..*

associated with
some of

have properties
reflecting
parameters of

generated
from

determines

interpreted
from

Architectural
Tactic

manipulates

Fig. 1. Ontology of architectural concepts for reasoning frameworks

A summary of the concepts is provided below (see references for further details).

• General quality-attribute scenario. A system-independent table for deriving
quality-attribute requirements. The table consists of six parts, namely: a stimulus,
a stimulus source, an environment, an artifact being stimulated, a response, and a
response measure; each part having different possible values. General scenarios
for several quality attributes are discussed in [4].

• Concrete quality-attribute scenario. A system-specific requirement that is an
instance of a general scenario. A concrete scenario for modifiability would look
like “The operating system used by different customers may vary (stimulus).

174 A. Diaz-Pace et al.

Adaptation of the software to the different processors (response) should be done
within 1 person-day (response measure)”.

• Quality-attribute model. The result of interpreting an architecture design with an
analytic theory. A quality-attribute model usually has a set of independent pa-
rameters that can be manipulated (in specific reasoning framework instances) to
control the values of the measures produced by the evaluation procedure. See the
chain impact analysis theory described in Section 2.1 for an example.

• Responsibilities. A responsibility is an activity undertaken by the software being
designed [18]. We use responsibilities as a means to express functional require-
ments as a part of quality-attribute scenarios, and moreover, as a means to inte-
grate the models produced by various reasoning frameworks. Responsibilities can
be annotated with quality-specific properties or take part in relationships. All this
information provides clues for a reasoning framework to create an initial architec-
ture and reason about quality-attribute issues. See example of Section 2.1.

• Architectural tactic. A vehicle for satisfying a quality-attribute-response measure
by manipulating some aspect of a quality-attribute model through design deci-
sions. That is, a tactic is an architectural transformation based on a quality-
attribute justification. A tactic comes with both analysis rules and design rules.
The former rules specify how the independent parameters of a quality-attribute
model can be controlled to achieve a desired measure (i.e., a scenario response).
The latter rules codify architectural decisions to move from a given architecture
to another one (variant) with a better fitness. See example of Section 2.1.

• Architectural view. A view is a design structure of the system that can be seen
from a viewpoint [4]. In general, an architectural view can be seen as a typed
graph that is composed of architectural design elements, their properties, and
their relations for the viewpoint. Examples of common architectural views are:
the module view, the process view, the component-and-connector view, etc.

Note that the ontology involves three types of model transformations. A first type

of transformation generates the architectural model (i.e., a set of architectural views)
from the scenarios and responsibilities. Then, a second type of transformation is the
interpretation procedure, which translates the views to a representation that is more
suitable for quality-attribute analysis. Finally, a third type of transformation is that of
tactics, which modifies the current architectural view(s) to generate architectural vari-
ants. Here, it is assumed also that the tactics determine responsibilities and relation-
ships for the architecture, which are consistent with the quality-attribute models ma-
nipulated in terms of its parameters.

In addition, we require every reasoning framework to publish a manifesto. This
manifesto is used by ArchE to integrate the reasoning framework to the infrastructure,
checking compliance of its modeling concepts and detecting possible conflicts with
other reasoning frameworks. The manifesto specifies the quality attribute the reason-
ing framework is interested in, the scenario structure, and other architectural element
types that the reasoning framework is able to process.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 175

2.1 Example: A Modifiability Reasoning Framework

We briefly describe a modifiability reasoning framework based on change impact
analysis (CIA) [6], as an example of the kind of quality-attribute models that can be
integrated in ArchE [1]2. Modifiability is seen as “the ability of a software architecture
to accommodate changes”. Given a set of change scenarios, the level of modifiability
of an architecture is a function of how functionality is allocated to modules and how
these modules interact with each other.

According to the CIA theory, the architecture is interpreted as a graph, in which the
nodes correspond to “units of change” (e.g., responsibilities, modules, interfaces)
while the arcs represent dependencies between the nodes (e.g., functional dependen-
cies, data flows). A modification of a specific node is likely to propagate to a
neighborhood of nodes. We assume that the effects of the change in the neighbors
decrease as a function of the distance to the source of the change. So, we define an
evaluation procedure that traverses the graph and returns cost estimations for the
change. To do this evaluation, nodes and arcs are annotated with properties. The total
cost of making a change is computed as a weighted sum that considers the costs of
individual nodes and the probabilities of change rippling associated to the arcs. Fur-
thermore, we allow manipulation of the graph via tactics, so as to affect the results of
the evaluation function. This is accomplished either by adjusting the values of proper-
ties or by altering the topology of the graph.

Figure 2 outlines the manifesto for our modifiability reasoning framework. This
manifesto is an XML file that lists the element types handled by the reasoning frame-
work. The manifesto exposes structural information of the element types, but it is not
concerned with their behavior. The first part of the manifesto identifies the reasoning
framework itself (tag <rf>). For CIA, the manifesto specifies a new type of modifiabil-
ity scenario (section <scenarioTypes>) as well as modifiability-related elements for it
(e.g., sections for responsibility parameters, responsibility relationship types, view
element types, view relation types, etc.). ArchE will use this specification as “meta-
information” of what is needed by the reasoning framework to operate. Additionally,
ArchE will display appropriate GUIs and infer the data mappings to its database.

In the <responsibilityStructure> section, we specify that a responsibility can take
part in a “functional dependency” relationship with other responsibilities. Besides, we
decorate plain responsibilities and dependency relationships with modifiability-
specific parameters. One parameter of a responsibility is the cost of changing that
responsibility. Two parameters of a dependency are the probabilities for “incoming”
and “outgoing” rippling of changes. The assignment of values to these parameters is
done by the architect based on previous experiences or empirical data.

The <view> section specifies a module view [4] as a suitable architectural descrip-
tion for modifiability issues. A module can be thought of as a code or implementation
unit that delivers some functionality. Modules have relationships with other modules.
A common relationship between modules is dependency, which denotes coupling
between two modules. Since ArchE relies on responsibilities, we have extended the
module view to include allocation relationships, so that a module can support one or
more responsibilities. Dependencies between modules are computed in terms of

2 Although the CIA-based model is plausible to reason about modifiability, the model has not

been fully validated yet.

176 A. Diaz-Pace et al.

responsibility dependencies and responsibility allocations. That is, if a responsibility
A is dependent on a responsibility B and they are allocated to different modules MA
and MB respectively, we will have then a dependency between modules MA and MB.
The dependency relationship for modules behaves similarly to the responsibility de-
pendency, having associated probabilities for incoming and outgoing change rippling.
The <model> section is about the representation of the graph in terms of units of
change and rippling probabilities. This section is optional in the manifesto, and it only
serves to visualization purposes of the ArchE GUI.

<!--xml header -->
<rf <!-- Reasoning framework identification -->

id=”ChangeImpactModifiabilityRF” <!-- Unique ID -->
quality=”Modifiability” <!--Target quality attribute -->
name=”ModifChangeImpact RF v0.1” <!--Description -->
version=”0.1” <!-- Version of this reasoning framework -->

>
 <scenarioTypes> <!-- Specification of 6-part general scenario -->
 . . .
 </scenarioTypes>
<responsibilityStructure > <!-- Information about responsibility parameters, types of responsibility

relations and parameters for those relationships, e.g., dependency relationship, cost of change or
rippling properties -->
 <parameterTypes> . . . </parameterTypes>
 <responsibilityParameters> . . . </ responsibilityParameters >
 <relationshipTypes> . . . </ relationshipTypes >
 </responsibilityStructure >
<view > <!-- Description of the design elements and relationships used in the architectural

representation, e.g., a module view-->
 <viewElementType> . . . </ viewElementType >
 <viewRelationType> . . . </ viewRelationType >
 . . .
 </view >
<model > <!-- Description of elements and relationships of the model used for quality- attribute

analysis, e.g., a dependency graph -->
 <modelElementType> . . . </ modelElementType >
 <modelRelationType> . . . </ modelRelationType >
 . . .
 </model >
</rf>

Fig. 2. Fragment of the XML manifesto

When the reasoning framework executes, its interpretation procedure will filter out
those design elements and design relations of the module view that are related to sce-
nario-specific responsibilities, in order to construct a graph for the architecture. This
graph will be evaluated according to a cost formula. We used a cost formula derived
from [1] for computing the cost of all the nodes impacted by a given scenario. The in-
terpretation and evaluation are graphically exemplified in Figure 3. Finally, the design
cycle is completed with two modifiability tactics [3], which are not included in the
manifesto but supported by the reasoning framework implementation. The first tactic
aims at reducing the cost of modifying a single (costly) responsibility by splitting it into
children responsibilities. An instance of this tactic is shown at the bottom of Figure 3.
The second tactic aims at reducing the coupling between modules by inserting an inter-
mediary that breaks module dependencies. These tactics are materialized through

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 177

transformations that affect both the module view and the responsibility structure. The
re-interpretation of the architectures generated by the transformations leads to slightly
different dependency graphs, and consequently, the modifiability measures for these
graphs vary. The process of interpretation-evaluation-transformation continues until the
analysis of the scenarios reaches values that satisfy the architect’s expectations.

 KEY

R1 R2
responsibility dependency

M1 M2
module dependency

responsibility allocation

 responsibility(unaffected)

primary responsibility

rippling chain responsibility

primary module

arc
N1 N2

N1 R
containment

node

EVALUATION

Modifiability scenario S responsibilities { R1, R2 }

Module C

Module A

R1

R3

R2

R4

Module B

CostR = 2.0 CostR = 4.0

CostR = 2.0
CostR = 3.0

CostM = 12.0
CostM = 14.0

CostM = 15.0

Rippling = 0.2

R1

INTERPRETATION

Cost(S) = CA + CB + CC = 8 + 13 + 7 = 28 hours

RE-DESIGN

Tactic Split-
Responsibility
applied to R2,
which gets
refined by
responsibilities
R2A & R2B

Node A
Node B

R2

Node C R3

8

7

13

R2

Module B2

Module A

Module C

R3
R4

Module B1

R1 R2A

R2B

Cost(S) = CA + CB1+CB2 + CC 23 hours

Modifiability scenario responsibilities { R1, R2A }

Fig. 3. Interpretation, evaluation and re-design for modifiability

178 A. Diaz-Pace et al.

3 ArchE-RF Interface: The Collaborative Infrastructure

The working of ArchE follows a blackboard style [8], in which different actors col-
laborate to produce a solution for a problem. Each actor can potentially read informa-
tion from the blackboard that was developed by other actors; and conversely, each
actor can introduce new information into the blackboard that could be of interest to
anyone else. The reasoning frameworks can be seen as knowledge sources, and ArchE
is the control component that manages the interactions among them, so as to ensure
progress in the architecting process. Note that ArchE is an assistant to explore quality-
driven architectural solutions, rather than being an automated design tool. Since not
all the decisions can be made by ArchE, the user becomes an additional actor in the
schema, who makes the final decisions. For instance, the computations of the reason-
ing frameworks need human intervention for specifying correct scenarios, entering the
necessary parameters for analysis and tactics, among other tasks. This modality of
assistance is known as mixed-initiative [17].

Enhancing the assistive capabilities of ArchE means to integrate different reason-
ing frameworks into the blackboard schema. To do so, we have re-designed the
initial version of ArchE towards a collaborative infrastructure: the ArchE Reasoning
Framework Interface (ArchE-RF Interface). In this infrastructure, reasoning frame-
works are considered as “external plugins”. The term “external” means that a reason-
ing framework resides anywhere outside the ArchE process, even on a remote
machine over networks. The term “plugin” means that a reasoning framework can be
added or removed at runtime without disturbing the current tasks of ArchE. Thus,
ArchE can take advantage of multiple computing resources by executing reasoning
frameworks in parallel.

In Figure 4, we show a simplified view of the interactions between ArchE and the
reasoning frameworks. A reasoning framework announces itself in the infrastructure
via its manifesto, and ArchE enables the reasoning framework for operation. From
that point on, the ArchE engine starts sending asynchronous interaction commands to
the reasoning framework(s), and also communicating information through a database.
Meanwhile, each reasoning framework acts as a “command listener”, executing the
received commands with its own logic and accessing the database. Once a reasoning
framework has successfully executed a command, it sends the results back to ArchE.
Examples of command results can be: analysis values, suggested tactics, or questions
for the user. ArchE either waits for the results of a predefined command or proceeds
with other commands, depending on the context.

The collaborative infrastructure relies on four main components:

• ArchE Engine. This component retains the functionality of the first release with
respect to the general structure of the search for architectural alternatives. The
only modification is that the design work is now delegated to “remote” reasoning
frameworks. This engine has very little knowledge of either quality-attribute de-
sign techniques or semantics of the system being designed. The responsibilities of
the engine are: processing of user inputs, update of GUI panels, parsing of the
manifesto, coordination of reasoning frameworks, presentation of their results,
and display of user questions.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 179

XmlBlaster
:Server

Architecture
Database
:Server

ArchE Engine :PC
Modifiability Reasoning

Framework:PC

Performance Reasoning
Framework:PC

Other Reasoning
Framework:PC

Reasoning
Framework
Interface

Reasoning
Framework
Interface

Reasoning
Framework
Interface

Key

Interface Asynchronous
Message over
TCP/IP

B is the
interface to A

Node A
B

Synchronous Call
over TCP/IP

Interaction
commands

Fig. 4. Integration of external reasoning frameworks with the ArchE engine

• XmlBlaster3. This is a message-oriented middleware where implicit message
invocations can take place among participants over networks. This middleware
fosters extensibility in terms of adding (or removing) a participant without con-
sidering others.

• Reasoning Framework Interface. This is the actual interface to a reasoning
framework. It abstracts the details about working with XmlBlaster, the communi-
cation protocol between ArchE and the reasoning framework, and also the algo-
rithms executing the interaction commands.

• Architecture Database. This repository is used to manage any persistent data that
need to be shared by ArchE and all participating reasoning frameworks. The data
include both the original and the candidate architectures (e.g., scenarios, respon-
sibilities, architectural views, and relationships among them).

The ArchE-RF Interface is implemented in Java, so the reasoning framework func-
tionality must be implemented in Java as well. Anyway, given the XMLBlaster char-
acteristics, the functionality could be implemented in other programming language
(e.g., C or C++) and then assembled with the top-level Java code using JNI4.

3.1 ArchE Interaction Commands

Basically, ArchE runs a search algorithm for finding promising candidate architec-
tures. The search is divided between the ArchE engine and the available reasoning
frameworks. On one side, the engine controls the main search cycle and makes a
global evaluation of the proposals of the reasoning frameworks. On the other side,
each reasoning framework should implement its own search algorithms to suggest
tactics for the current architecture.

3 http://www.xmlblaster.org/
4 http://java.sun.com/javase/6/docs/technotes/guides/jni/

180 A. Diaz-Pace et al.

The search cycle is structured around five commands that govern the interactions
with the reasoning frameworks.

• ApplyTactics. This command requests a specific reasoning framework to apply a
tactic to the current architecture in order to refine it (Re-design phase). The tactic
must come from a question that was previously shown to the user of ArchE and
she agreed to apply (see command DescribeTactic below). The expected result is
to have the refined version of the current architecture in the database.

• AnalyzeAndSuggest. This command requests a reasoning framework to analyze
the current architecture regarding scenarios of interest, and to suggest new tactics
if some scenarios are not fulfilled (Interpretation and Evaluation phases). The
reasoning framework returns the analysis results and the tactics (if any) to ArchE.

• ApplySuggestedTactic. This command requests a reasoning framework to apply a
tactic to the current architecture in order to create a new candidate architecture
(Re-design phase on a new architecture instance). The tactic must be one of the
tactics that the reasoning framework suggested when executing the AnalyzeAnd-
Suggest command. The expected result is to have a candidate architecture in the
database.

• Analyze. This command requests a reasoning framework to analyze a candidate
architecture regarding scenarios of interest (Interpretation and Evaluation phases
on a new architecture instance). The evaluation results returned by the reasoning
framework will be used by ArchE to prioritize candidate architectures.

• DescribeTactic. This command requests a reasoning framework to provide ArchE
with user-friendly questions that describe tactics or any other recommendations.
This is actually the main mechanism to offer design advice to the user on how to
improve its architecture. Again, ArchE does not know about the semantics of user
questions, it just shows these questions in the GUI and let the user decide.

Whenever the user makes a change to some part of the design, ArchE starts a new

cycle of its algorithm and executes the above commands in the following sequence:

1. If the change is a decision to apply a tactic, ArchE sends ApplyTactics to the
reasoning framework that suggested the tactic, and then, the reasoning framework
modifies the working architecture according to the tactic. For example, let’s con-
sider that our modifiability framework inserts an intermediary module upon
user’s request.

2. For every reasoning framework, ArchE sends AnalyzeAndSuggest sequentially.
Each reasoning framework might modify the current architecture (if needed),
in preparation for the following analysis task. This assures consistency on the
responsibility structure and initialization of its architectural view. For example,
our reasoning framework can decorate new responsibilities with costs (if that
property is missing) and update the module view by allocating every new respon-
sibility to a module. Then, each reasoning framework starts its analysis of the ar-
chitecture. If the analysis results say that some scenarios are not fulfilled, it tries
to find tactics suitable for the architecture. At last, it returns the analysis results
and the list of suggested tactics. For instance, our reasoning framework may run
its change impact analysis, detect a costly responsibility as a main contributor to
the scenario response (total cost), and propose a responsibility splitting.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 181

3. For every suggested tactic:
a) ArchE sends ApplySuggestedTactic to the reasoning framework with the tac-

tic under consideration. The reasoning framework creates a candidate archi-
tecture by modifying the architecture according to the tactic.

b) For every reasoning framework, ArchE sends Analyze in parallel. Each
framework analyzes the candidate architecture and returns the evaluation re-
sults to ArchE.

4. ArchE prioritizes all the evaluation results that came from applying suggested
tactics. This ranking of evaluation results is displayed as a matrix of scenarios
versus tactics called “traffic light”. For every reasoning framework, ArchE sends
DescribeTactic in parallel. Each reasoning framework provides ArchE with ques-
tions that describe suggested tactics (if applicable). For example, our reasoning
framework would ask the user to apply the tactic of splitting on a particular re-
sponsibility, in order to satisfy a modifiability scenario.

5. ArchE shows to the user all the questions sent by reasoning frameworks. The
cycle goes back to step 1.

3.2 Governing Reasoning Frameworks

When implementing the ArchE-RF Interface, a reasoning framework is expected to
support six basic functionalities, which will hook into the search cycle described
above. The functionalities are:

- Self Description (manifesto)
- Creating Initial Design
- Analyzing (for commands Analyze and AnalyzeAndSuggest),
- Suggesting Tactics (for command AnalyzeAndSuggest)
- Applying Tactics (for commands ApplyTactic and ApplySuggestedTactic)
- Describing Tactics (for command DescribeTactic)

ArchE does not require a reasoning framework to implement all the functionalities,

but at least Self Description must be implemented to enable communication with
ArchE. The implementation of the remaining functionalities is up to the researcher,
depending on the type of reasoning framework wanted. The Analyzing functionality is
generally present in any reasoning framework. For example, if we build our modifi-
ability reasoning framework just to apply CIA on the module view, we can implement
the Analyzing and Creating Initial Design parts and ignore other functionalities.
However, if we would like our reasoning framework to be able to alter the architec-
ture (after performing analysis), then we also need to implement the functionalities of
Suggesting Tactics, Applying Tactics and Describing Tactics.

In addition to a command-based interface for interacting with ArchE, the ArchE-
RF Interface API provides guidelines to implement the reasoning framework inter-
nals. These guidelines can be seen as a small object-oriented framework [11] that
predefines the overall design of a plugin, its decomposition into Java interfaces and
classes, the main methods to be overridden, and the general flow of control derived
from the interaction commands. These features significantly reduce the design deci-
sions that have to be made by a researcher when creating plugins for ArchE.

182 A. Diaz-Pace et al.

The ArchE-RF Interface API is structured into four layers. Each layer provides ser-
vices for the upper layers, although there is no strict layering.

• Communication layer. It is the top-level layer that includes all the classes and
interfaces related to interacting with ArchE via the XmlBlaster. It provides func-
tionalities such as: registration of a reasoning framework with ArchE at runtime;
reception of an interaction command from the XmlBlaster and delegation of its
execution to the Execution layer; communication of progress messages and notice
of command cancellations.

• Execution layer. It is equipped with a set of algorithms, each processing a differ-
ent interaction command as forwarded from the Communication layer. Based on
the services from the two layers below it, the Execution layer provides functional-
ities such as: restoring, saving and deletion of the architecture in the ArchE Data-
base; exception handling, etc.

• Reasoning Framework layer. It provides the ArchEReasoningFramework class,
which has to be extended by a researcher in order to implement a specific reason-
ing framework. It also provides other helping classes that she may use to handle
inputs and outputs for an interaction command.

• Data layer. It is the bottom-level layer that provides the upper layers with the
concepts shown in Figure 1. It includes the Java interfaces needed to manage the
key concepts, which must be mapped to concrete classes and database tables.

3.3 Interaction with the User

The user gets to know about the reasoning framework proposals for the current
architecture through two GUI mechanisms: the “traffic-light” metaphor and the user
questions. Figure 5 shows a traffic light snapshot for modifiability and performance
scenarios, along with potential scenario improvements when applying different tactics.
The columns display color-coded ball icons that represent the tactics being evaluated
by ArchE. A green ball indicates that the scenario will be satisfied if that tactic is ap-
plied, while a red ball indicates that the scenario will not be satisfied. Note also how
the effects of the tactics on the scenarios lead to quality-attribute tradeoffs.

The snapshot below the traffic light shows a list of user questions. Typically, a
question describes the purpose of a particular tactic. For instance, Figure 5 displays a
question dialog for the tactic of splitting a costly responsibility. If the user enters a
positive answer, then ArchE will trigger the corresponding architectural transforma-
tion. The types of questions associated to a reasoning framework must be specified by
the reasoning framework developer in a questions file that supplements the manifesto.
This questions file let ArchE know about the template and parameters of each possible
question. The bottom part of Figure 5 shows how the question scripts look like. When
the ArchE engine invokes the DescribeTactic command and the reasoning framework
returns a question instance, ArchE loads its associated template and substitutes the
placeholders of the text with specific question parameters. The ArchE GUI uses that
information to display the question by means of predefined graphical widgets. Once
the user picks and answers a particular question, ArchE translates the results into an
ApplyTactic command for the reasoning framework that provided that question.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 183

questionId: splitResponsibility
parameters: <1> the target responsibility
<2> the current cost for the scenario (double)
<3> a cost after applying the tactic (double)
default: null (this could be 'yes')
##
splitResponsibility.questionType = yesNo
 splitResponsibility.category = Applying modifiability tactics
 splitResponsibility.purpose = The responsibility "<1:name>" has multiple strong dependencies
to other responsibilities. Therefore, it might be a good idea to split responsibility "<1:name>" into
two children responsibilities so as to minimize the dependencies. An estimate
suggests that you could reduce costs from "<2>" to "<3>" person days for this change scenario.
splitResponsibility.question = Do you want to split the responsibility "<1:name>"?

Question script
(in questions file)

Question
parameters

Traffic Light

List of user questions

Question selected by the user
tradeoff
point

Fig. 5. Configuration and visualization of tactics in ArchE

4 Implemented Reasoning Frameworks and Lessons Learned

Currently, we have created two reasoning framework plugins using the ArchE-RF
Interface. The first plugin is a full-fledged reasoning framework for modifiability (as
outlined in sub-section 2.1), which served to test and tune the infrastructure. The

184 A. Diaz-Pace et al.

second plugin is a reasoning framework for real-time performance that takes advan-
tage of an existing analytic solver called MAST5. MAST [12, 15] is a toolset for
describing event-driven real-time systems and performing schedulability analysis.
Figure 6 shows a snapshot of ArchE running the two plugins. In general, validating
reasoning frameworks with respect to the scope and accuracy of their predictions is
the job of the reasoning framework developer and not a portion of ArchE.

After writing its manifesto, the modifiability reasoning framework was imple-
mented from scratch in Java. Initially, we defined subclasses for the responsibility
dependencies and the responsibility structure. We also created a class to represent the
module view. Then, we implemented a subclass of the ArchEReasoningFramework
class that encapsulates the interpretation and the formulae for computing various
metrics such as cost, coupling and cohesion. On this basis, we codified rules that
looked at the values of these metrics to configure possible tactics. Finally, we
equipped the reasoning framework with architectural transformations for the tactics,
and we also wrote the corresponding questions file.

The performance reasoning framework was conceived as an “analyzer” with no
support for tactics. The implementation steps were similar to the ones carried out for
the modifiability plugin, except that we wrapped the MAST solver to supply the Ana-
lyze functionality. The MAST input is an ASCII file that consists of an arrangement
of tasks with timing requirements (e.g., latency) and events linking the tasks. A worst-
case analyzer processes this specification and outputs the timing behavior of the
system. In our ArchEReasoningFramework subclass, the Analyze implementation
converts the performance scenarios and their responsibilities to tasks, considering the
responsibility relationships as event reactions between tasks. The task model is sent to
a file and fed into the MAST toolset. The worst-case latency results are then com-
pared against the timing requirements to determine the schedulability of the scenarios.
We are now working on the addition of a set of performance tactics to this plugin.

The reliance of ArchE on reasoning frameworks favors integrability and modular
reasoning about quality attributes. One of the research questions here is the extent to
which the interactions (i.e., dependencies) among quality-attribute models can be
reduced. The implementations above shed light on general issues about these interac-
tions and also exposed some drawbacks of the blackboard approach.

In the current design, dataflow interactions arise because the reasoning frameworks
often share (parts of) the architectural representation (e.g., responsibilities, elements of
architectural views). Anyway, this architectural representation must be kept consistent
at all times. Our plugins shared responsibilities but worked on separate architectural
views (i.e., a module view and a task view respectively), and only the modifiability
plugin had the capability of modifying the architecture. Because of these factors, the
consistency checking was relatively simple. For instance, if a modifiability tactic splits
a responsibility that appears in a performance scenario, then the performance reasoning
framework is asked to update its task model and run the schedulability analysis again.
We believe that a general treatment of opportunistic or harmful types of interactions
would require more knowledge about the architectural representation, the effects of
tactics or the user’s inputs.

5 MAST homepage: http://mast.unican.es/

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 185

(1) Modifiability
reasoning
framework activity

ArchE GUI

XMLBlaster
running in

background

(2) MAST analyzer for performance

Fig. 6. The ArchE prototype executing two reasoning frameworks as plugins

The management of tradeoffs is decoupled into two aspects. The first aspect has to
do with the “traffic light” metaphor, so that the user must decide on a tactic making a
quality-attribute balance that is good enough for her scenarios of interest. The second
aspect comes from the opportunistic/harmful interactions discussed above. A simple
source of tradeoffs is the parameters of responsibilities [2]. For instance, when insert-
ing an intermediary due to modifiability reasons, the modifiability reasoning frame-
work can impose a minimum execution time for that responsibility, but this constraint
on the execution time parameter later impacts on the schedulability analysis of the
performance reasoning framework. Putting mechanisms in place for ArchE to support
this second aspect of trade-offs is a topic for further research.

Regarding search, each reasoning framework looks locally for tactics that change
the architectural structure. However, the resulting architectural transformations do not
always guarantee an improvement of the evaluation function, because that function
depends on both the architectural configuration and tactic-specific parameters. For
instance, when applying the tactic of splitting a responsibility, we must set the costs
for the children responsibilities and set the rippling probabilities for their dependen-
cies. Different choices for these values lead to different instances of the same tactic,

186 A. Diaz-Pace et al.

some of which reduce the cost of the change and some others do not. The problem of
finding an adequate configuration of values for a given tactic is not trivial, and it often
needs heuristic search.

We additionally observed some side-effects of the blackboard architecture on us-
ability. A first issue is the processing overhead forced by the main control strategy,
because the ArchE engine does not know the semantics of the user’s actions. A sec-
ond issue (related to the control strategy) is that the reasoning framework activities for
responding to the ArchE commands have limited visibility through the GUI. There-
fore, while ArchE is running, the user can only handle or inspect reasoning framework
features at specific points of the exploration process. Future developments should
provide a more flexible user-interaction schema.

5 Related Work

The analysis of component-based systems by applying quality-attribute techniques
has been an active field of research and technology transfer for many years. Several
quality-specific approaches have been developed [7, 10, 14, 15], although few of
them have tackled the integration of models and analysis tools. To begin with, the
Predictable Assembly from Certifiable Components (PACC) initiative at the SEI has
focused on building component-based systems that have predictable behaviors prior
to implementation [15]. PACC uses the notion of reasoning frameworks in combina-
tion with model checking to analyze performance and safety properties but also to
enforce the assumptions required by each analysis technique when applied to the
systems. This technology can be applied to predict other properties as well (e.g., reli-
ability, security). As evidenced by the MAST example, we think these techniques can
be integrated into ArchE with little effort.

The DeSiX approach [7] provides tools for component-based systems on multi-
processor architectures that allow for design space exploration. Here, scenario-based
analyses for performance, reliability and cost serve to focus the design on particular
architectural configurations. The developer can map usage profiles to simulation
tasks, and then visualize the resulting architectures using Pareto curves. When com-
pared to ArchE, a drawback of DeSiX is that it does not support automated search,
and the developer manually selects configurations to be evaluated by the tool.

Other researchers have proposed a view of software engineering as a search prob-
lem [9], in which automation is supported by optimization techniques. Along this line,
Grunske [13] has investigated the integration of quality-attribute techniques using
genetic algorithms for some experiments involving reliability and cost requirements.
Also, he has proposed a generic model for quality-attribute evaluation [14] that con-
tains four elements, namely: encapsulated evaluation models, composition algorithms
for these evaluation models, operational/usage profiles, and evaluation algorithms to
determine relevant quality measures from the evaluation models. This perspective is
similar in spirit to that of reasoning framework, although it does not consider explic-
itly the aspect of architectural transformations. Nonetheless, Grunske has pointed out
challenges for the combined use of quality-attribute models and tool support, such as
composability, analyzability and complexity issues.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 187

More recently, Edwards et al. have [10] coined the term “model interpreter” as a
vehicle to transform component-based models into analysis models by means of
model-driven engineering (MDE) techniques. Consequently, they have developed a
“tool-chain” called XTEAM that supports and integrates different types of model
interpreters. These interpreters are able to implement transformations between high-
level component models (amenable to architectural reasoning) and low-level analysis
models (amenable to prediction of component assembly properties). This approach is
still experimental and has many analogies with the PACC work, but unlike ArchE, it
does not seem to focus on the exploration of the design space.

6 Conclusions

In this paper, we have described a tool approach for incentivizing the use of quality-
attribute models in architectural design. The ArchE approach relies on having a col-
lection of reasoning frameworks that are each specialized for a single quality attribute
but that work together in the creation and analysis of architectural designs. ArchE is
not intended to perform an exhaustive or optimal search in the design space; rather, it
is an assistant to the architect that can point out “good directions” in that space. Along
this line, the contributions of this work are the encapsulation of quality-attribute
knowledge and the tool infrastructure to accommodate that knowledge.

The ArchE-RF Interface constitutes an important step towards improving the de-
sign of the ArchE prototype. Nonetheless, there are issues that need further discussion
and implementation efforts. Some of these issues are:

- Incorporation of UML features for architectural modeling, and linking ArchE to
other development tools.

- Management of tradeoffs between solutions proposed by individual reasoning
frameworks, under multiple criteria (e.g., cost, utility, uncertainty).

- Experiments with searching techniques and more powerful solvers (e.g., simu-
lated annealing, planning, SAT, etc.).

- Support for recording design decisions, as an extension of quality-attribute analy-
sis results and tactic proposals.

Finally, we believe that the more reasoning frameworks that are available, the
broader the reasoning capabilities of ArchE will be. Thus, we hope this work will
stimulate researchers, educators and practitioners to plug in and share analysis/design
models for various quality attributes, in order to foster architecture-centric practices.

References

1. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Experience Using an Expert System to As-
sist an Architect in Designing for Modifiability. In: Proceedings 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA 2004), Oslo, Norway, p. 281 (2004)

2. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing Software Architectures to
Achieve Quality Attribute Requirements. Software IEE 152(4), 153–165 (2005)

3. Bachmann, F., Bass, L., Nord, R.: Modifiability Tactics. Technical report CMU/SEI-2007-
TR-002. Software Engineering Institute, Pittsburgh, PA (2007)

188 A. Diaz-Pace et al.

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

5. Bass, L., Ivers, I., Klein, M., Merson, P., Wallnau, K.: Encapsulating Quality Attribute
Knowledge. In: Proceedings 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2005), Pittsburgh, PA, pp. 193–194. IEEE Computer Society, Los Alamitos
(2005)

6. Bohner, S., Arnold, R.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

7. Bondarev, E., Chaudron, M., de With, P.: Quality-Oriented Design Space Exploration for
Component-Based Architectures. Computer Science Report. University of Technology,
Eindhoven, The Netherlands (2006)

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-
ware Architecture. A System of Patterns. John Wiley & Sons, Chichester (1996)

9. Clarke, J., Dolado, J., Harman, M., Hierons, R., Jones, R., Lumkinm, M., Mitchell, B.,
Mancoridis, S., Rees, K., Roper, M., Shepperd, M.: Reformulating Software Engineering
as a Search Problem. Software IEE 150(3), 161–175 (2003)

10. Edwards, G., Seo, C., Medvidovic, N.: Construction of Analytic Frameworks for Compo-
nent-Based Architectures. In: Proceedings of the Brazilian Symposium on Software Com-
ponents, Architectures and Reuse (SBCARS). Campinas, Sao Paulo, Brazil (2007)

11. Fayad, M., Schmidt, D., Johnson, R. (eds.): Building Application Frameworks: Object-
Oriented Foundations of Framework Design. Wiley, Chichester (1999)

12. Gonzalez Harbour, M., Gutierrez García, J.J., Palencia Gutiérrez, J.C., Drake Moyano,
J.M.: MAST: Modeling and Analysis Suite for Real Time Applications. In: Proceedings
13th Euromicro Conference on Real-Time Systems (ECRTS), IEEE Comp. Society, Wash-
ington (2001)

13. Grunske, L.: Identifying "Good" Architectural Design Alternatives with Multi-Objective
Optimization Strategies. In: International Conference on Software Engineering (ICSE),
Workshop on Emerging Results, pp. 20–28, 849–852. ACM Shanghai, China (2006)

14. Grunske, L.: Early quality prediction of component-based systems - A generic framework.
Journal of Systems and Software 80(5), 678–686 (2007)

15. Ivers, J., Moreno, G.A.: Model-driven development with predictable quality. In: Compan-
ion 22nd ACM SIGPLAN Conference on Object Oriented Programming Systems and Ap-
plications Companion (OOPSLA 2007), Montreal, Quebec, Canada (2007)

16. McGregor, J., Bachmann, F., Bass, L., Bianco, P., Klein, M.: Using an Architecture Rea-
soning Tool to Teach Software Architecture. In: Proceedings 20th Conference on Software
Engineering Education & Training (CSEE&T 2007), pp. 275–282. IEEE Computer Soci-
ety, Los Alamitos (2007)

17. Wilkins, D., des Jardins, M.: A Call for Knowledge-based Planning. AI Magazine 22(1)
(Spring, 2001)

18. Wirfs-Brock, R., McKean, A.: Object Design: Roles, Responsibilities, and Collaborations.
Addison-Wesley, Boston (2003)

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 189–204, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Middleware Architecture Evaluation for Dependable
Self-managing Systems

Yan Liu1, Muhammad Ali Babar2, and Ian Gorton3

1 National ICT Australia, Australia
Jenny.liu@nicta.com.au

2 Lero, the Irish Software Engineering Centre, University of Limerick, Ireland
malibaba@lero.ie

3 Pacific Northwest National Laboratory, USA
ian.gorton@pnl.gov

Abstract. Middleware provides infrastructure support for creating dependable
software systems. A specific middleware implementation plays a critical role
in determining the quality attributes that satisfy a system’s dependability re-
quirements. Evaluating a middleware architecture at an early development
stage can help to pinpoint critical architectural challenges and optimize design
decisions. In this paper, we present a method and its application to evaluate
middleware architectures, driven by emerging architecture patterns for devel-
oping self-managing systems. Our approach focuses on two key attributes of
dependability, reliability and maintainability by means of fault tolerance and
fault prevention. We identify the architectural design patterns necessary to
build an adaptive self-managing architecture that is capable of preventing or
recovering from failures. These architectural patterns and their impacts on
quality attributes create the context for middleware evaluation. Our approach
is demonstrated by an example application -- failover control of a financial ap-
plication on an enterprise service bus.

1 Introduction

Dependability is defined as the ability of a system to avoid failures that are more
frequent and more severe than is acceptable [3]. It encompasses a set of attributes,
including availability, reliability, safety, integrity, and maintainability. Mechanisms
for achieving dependability can be categorized into four groups, namely fault preven-
tion, fault tolerance, fault removal and fault forecasting. Dependable software systems
are an integral part of many large scale mission critical systems such as financial
systems, defence applications, health care and water management systems [10]. De-
pendability is therefore a key quality attribute in the design of such systems.

Traditional approaches to achieving dependability mostly focus on system design
and implementation with a fixed configuration or human-configurable operations.
However, these approaches are less effective for systems that are required to be adap-
tive and responsive to dynamic changes in real-time. For example, not all potential
runtime errors and failures can be known during system design. In addition, in many
autonomous systems (such as self-organized sensor networks) minimizing the degree
of manual reconfiguration is the central doctrine [1]. This has motivated recent

190 Y. Liu, M. Ali Babar, and I. Gorton

research efforts on constructing adaptive and self-managing software architecture,
which enable automatic problem diagnosis and recovery [10][11].

Adaptive self-managing systems are designed to constantly monitor and reconfigure
themselves in response to changing environmental or operational conditions, including
errors or failures resulting from unexpected hardware or software faults, network prob-
lems, system overloading, and other runtime conditions.

A range of domain specific self-managing strategies and various intelligent mecha-
nisms have been developed for constructing autonomic computing systems. Underly-
ing these mechanisms is a core set of common, domain-independent architectural
patterns [16][17], from which best practices can be extracted to form new design
patterns for constructing adaptive self-managing architectures. These new design
patterns can improve architecture design, and importantly can establish the context for
evaluating middleware architectures.

However adaptive self-managing architectures introduce a complicating factor in
developing a dependable system. This is because an adaptive architecture requires not
only suitable architectural patterns but also infrastructure mechanisms to incorporate
the intelligence needed for self-healing or self-configuration. Both demand support
from the underlying infrastructure, including the middleware. This tight coupling of
middleware and the self-managing architecture running on top of it introduces com-
plexity in managing dependability in an adaptive manner. Therefore, evaluating mid-
dleware architectures can provide insights into the design and development of an
implementation to meet dependability requirements.

Most architecture evaluation methods [1][2] do not explicitly evaluate the middle-
ware to be used in a particular implementation; rather middleware is either considered
at the implementation level or the deployment level. Nor do these methods explicitly
consider the design patterns used in a proposed architecture. However, design patterns
are an integral part of middleware evaluation practices [6]. Hence, design patterns
should be considered as explicit factors in architecture evaluation methods. To this
end, we have developed a Method for Evaluating Middleware architectureS (MEMS)
[12], which measures middleware architectures by rating multiple quality attributes.
The output of MEMS helps to determine the suitability of alternative middleware
architectures to meet an application’s quality goals. However one limitation of
MEMS is that it does not consider design patterns in the specific context of self-
managing architectures.

We have therefore made substantial extensions to MEMS for supporting pattern-
based middleware architectures for dependable self-managing systems. The extended
version of MEMS fulfils the basic requirements, including:

• Capturing key self-managing scenarios in additional to functional scenarios;
• Evaluating patterns and their implementations;
• Conducting both qualitative and quantitative evaluations.

In this paper, we present MEMS and apply it to evaluate adaptive self-managing
middleware architecture. We focus on two attributes of dependability, namely reli-
ability and maintainability. In particular, we are interested in the means of fault pre-
vention and fault tolerance of these two attributes. We identify the architectural de-
sign patterns necessary to build an adaptive self-managing architecture that is capable
of fault tolerance and fault prevention. The two patterns studied in this paper are the

 Middleware Architecture Evaluation for Dependable Self-managing Systems 191

M-A-P-E pattern and policy point pattern. They create an application context for
middleware evaluation. We then explain different aspects of MEMS by applying it to
evaluate Mule [15], an open source enterprise service bus middleware technology, in
supporting adaptive failover control of financial services integrated by Mule.

2 Self-managing Architecture Patterns

A primary concern with self-managing architectures is preserving safety after changes
are made to the architecture, behavior and structure of a system [10]. The assumption
is that self-managing abilities can help to prevent failure and thus reduce the probabil-
ity of violating dependability requirements. However, there is the possibility that a
poorly designed self-managing mechanism might degrade system dependability in
unanticipated ways. The rigor and accuracy of a self-managing strategy plays a key
role in attaining dependability. Best practices can inform new design patterns for
constructing adaptive self-managing architectures, which are extracted from success-
ful autonomic computing systems that share common architectural patterns
[16][17][18]. The use of these patterns creates the context for middleware architecture
evaluation, in which patterns can be examined against an individual middleware im-
plementation to evaluate its ability to support a self-managing application.

2.1 M-A-P-E Pattern

The M-A-P-E pattern is derived from IBM’s Autonomic Computing architecture
blueprint [10][17]. It was designed as reference architecture to construct autonomic
systems. M-A-P-E is suitable for adaptive architecture, which is an integral element in
autonomic computing. We have applied the template in [6] to describe the pattern, in
terms of its implications for dependability attributes.

Context: M-A-P-E stands for the four core functions to organize the structure of an
autonomic system, namely monitor, analyze, plan and execute. It models the funda-
mental concepts, constructs and behaviors for building self-managing capability into
the environment.

Problem: The creation of self-managing capabilities requires extensible software
architectures to provide flexible monitoring and feedback mechanisms, with minimal
intrusion.

Solution: The function of a self-managing capability is a control loop that collects
details from the system and acts accordingly.

Structure: A control loop interacts with the managed element and consists of tasks
for monitoring execution, analyzing collected data, planning the necessary responses
based on adaptation policies, and executing actions to enforce the adaptive behavior.

Implementation: M-A-P-E does not specify how the control loop should be imple-
mented. For example, in Java component-based systems, the communication between
core entities can be provided by the RMI and JMX protocols [13], while in Web ser-
vices, the communication can be replaced by SOAP and WSDM protocols [14]. The
mechanisms, services and configuration of the underlying middleware utilized are the
tactics to realize the architecture.

192 Y. Liu, M. Ali Babar, and I. Gorton

Variants: There can be several architecture alternatives to implement the M-A-P-E
pattern. For example, in a tightly coupled design, the M-A-P-E entities can explicitly
invoke one another; while a loosely coupled system can use an intervening layer of
abstraction to encapsulate inter-component connection and communication and to
separate them from application functionality. This tightly coupled implementation is
simpler to implement, but this comes at the cost of flexibility and scalability.

Affected Attributes: The M-A-P-E can be adopted to improve dependability by
means of monitoring the system and automatically responding to changes that may
result in failures. However, extra processing from M-A-P-E can also introduce over-
head, and a poor design can degrade dependability.

2.2 Policy Point Pattern

The policy point pattern is a design pattern that is important in constructing self-
managing architectures. A policy is a representation of desired behavior or constraints
on behaviors defined in a standard external form. In a self-managing system, a deci-
sion to take an action depends on policy specifications. This pattern is derived from
QoS control in network systems [1], and can be applied to general policy management
in self-managing architectures.

Context: Policies specify the goals of self-managing strategies. A decision to take an
action depends on information collected and policy specifications. The policy point
pattern models the basic constructs and behaviors for managing and coordinating
policies.

Problem: In a self-managing architecture, adaptive behavior is managed by trans-
forming policies into configuration changes and applying those changes to the man-
aged element or resource. When a policy is enforced at a particular point of execution,
it is necessary to structure entities or components involved in the policy management.
A simple policy-management architecture has been effective in developing QoS con-
trol of complex systems [1].

Solution: Policy points are defined as individual entities that are deployable to the
managed systems. These entities collect information, make decisions, and enforce
policy.

Structure: the policy point pattern consists of three types of policy points: policy
decision point (PDP), policy information point (PIP), and policy enforcement point
(PEP). A PDP usually needs to refer to more than one policy when making a decision.
The information is collected by a PIP and put into a repository, but the PIP does not
return any decision. The PDP retrieves information it needs from the repository. A
policy enforcement point (PEP) actually performs actions and enforce polices.

Implementation: A PIP, PDP and PEP can be implemented as an interceptor. An inter-
ceptor is a mechanism to intercept requests, capture execution context and inject actions.

Variants: A self-managing architecture may involve multiple policies. The set of
PDP, PIP and PEP can be structured into hierarchical layers. For example, a higher
layer PDP may produce decisions depending on multiple PDPs and PIPs from the
lower layers.

 Middleware Architecture Evaluation for Dependable Self-managing Systems 193

Affected Attributes: The policy point pattern is complementary to the M-A-P-E
pattern. A correctly applied policy point pattern can help structure M-A-P-E entities
to attain dependability attributes. However, an incorrect application can be misleading
and even incur negative effects on quality attributes including those of dependability.

2.3 Pattern Integration in Self-managing Architecture

The M-A-P-E and policy point patterns can be used together in a self-managing archi-
tecture. A set of policy points can help to structure control components and customize
an M-A-P-E control loop. Likewise, the policy point pattern relies on those M-A-P-E
entities to enable the function of each policy point, such as monitoring changes or
detecting internal or external conditions. The policy enforcement is actually per-
formed by the execution entity of the M-A-P-E pattern.

The composition of these patterns can produce various solutions that exert different
demands on the underlying middleware infrastructure. This requires that patterns and
their implementation should be integral factors in the middleware evaluation context.
Moreover, it is also expected that the implementation of these patterns will not de-
grade the dependability attributes required in highly dependable systems. This im-
poses extra requirements on an evaluation method to include risk analysis. We depict
the relations between patterns, dependability requirements and attributes, metrics and
criteria into an evaluation context shown in Figure 1. The arrows in this context indi-
cate dependency between different elements of this context.

Fig. 1. Middleware Architecture Evaluation Context

3 Evaluation Method

The core of our evaluation method is to treat design patterns as explicit factors for
evaluating middleware architectures. Our method to evaluate middleware architectures

194 Y. Liu, M. Ali Babar, and I. Gorton

has been developed in the context of Figure 1, in which design patterns play a critical
role in driving the evaluation and having implication on quality attributes. To achieve
this goal, we have extended MEMS [12] to incorporate design patterns. Extended
MEMS is a scenario-based architecture evaluation method, consisting of six steps:

1. Determine quality attributes. The outcome provides a set of criteria used by an

evaluator to evaluate an architecture. As shown in the metrics column in Figure 1,
we focus on reliability and maintainability.

2. Generate key scenarios to refine the context of reliability and maintainability by
means of fault tolerance and fault prevention. The design pattern’s description is
mapped to the key scenario context.

3. Determine pattern alternatives. This step has three sub steps.
3.1. List quality attributes affected by the design pattern. This is achieved by exam-

ining the design pattern descriptions through its structure or variants.
3.2. Determine metrics for measurement. The metrics can be either qualitative or

quantitative. For example, performance can be described by a quantitative met-
ric such as response times, while programmability is more often evaluated by
qualitative metrics.

3.3. Identify alternative implementation. A single pattern can have alternative im-
plementations. The pattern variants can help identify alterative architecture de-
cisions using patterns.

4. Identify middleware mechanisms, which determine the feasibility and effi-
ciency of the architecture solution – how the design patterns can be realized by a
middleware.

5. Define quality attribute scale, which is necessary to evaluate qualitative attrib-
utes using a rating scale, such as the level of severity of risks.

6. Evaluate quality attributes. At this stage, qualitative values are evaluated to
assess quality attributes. For quantitative attributes, the rating scale defined ear-
lier will be used to gauge each quality attribute.

Finally, ratings for each quality attribute are visually presented. The results of the
evaluation can either be used as feedback for developers or an architect can iterate
through step 2 to further refine the quality attributes.

4 Case Study

In this paper, we use a loan processing integration system to illustrate the use of
MEMS for evaluating middleware architecture. The architecture design of this appli-
cation is discussed in detail in [9] (see chapter 9). Different versions of the application
have been implemented on several ESB platforms including Mule [15]. We have
chosen this application because it satisfies the scenarios, which illustrate the basic
requirements for the underlying middleware such as EJB, Messaging, Web Services
and Enterprise Service Bus (ESB), to support dependable SOA design and integration.
Therefore, evaluating the ESB middleware to support the dependable loan application
can give insights into research issues involved in dependability analysis, and help us
identify solutions in middleware-based architecture design.

 Middleware Architecture Evaluation for Dependable Self-managing Systems 195

4.1 Determine Quality Attributes

The goal is to enhance the existing loan processing application with adaptive failover
capabilities. Please refer to Figure.1 for the means and metrics of interests.

4.2 Generate Key Scenarios

The loan processing workflow is as follows shown in Figure2. A customer requests a
loan handled by a Loan Broker. The Loan Broker is responsible for firstly checking
the credit rating of the customer and secondly contacting all the banks, querying the
interest rate of each bank and returning the lowest interest rate to the customer. Indi-
vidual entities, customers, loan broker, credit bureau and banks are all deployed in
separate physical domains and integrated by messages transferred over Mule ESB.
Technical details of configuring message channels on Mule are addressed in [15].
This system has dependability requirements on two key scenarios related to credit
bureau operations:

Verify the Credit Bureau Operation. The credit bureau is an external service pro-
vided by a third party. The correct operation of this service should be ensured by
periodically sending test messages. The test messages verify both the correctness of
the data returned (such as the data should be within a range) and the response time of
the external credit bureau operations.

Credit Bureau Failover. If the credit bureau malfunctions as the result of the verifi-
cation, credit request messages should be temporarily routed to another service pro-
vider by a controller. While the message traffic is redirected, the monitor still keeps
sending test messages to the primary provider. When the monitor confirms the correct
operation of the service, the request messages are rerouted to the primary service
provider.

These two key scenarios lead to further implicit architecture requirements:

• The test messages should not disturb the existing message flow. It is also required
that the usage of network bandwidth sending test messages should be minimized.

• The correct credit bureau operations should be specified in policies, which are
consulted at runtime for management and control decisions.

Fig. 2. Loan Processing System on ESB

196 Y. Liu, M. Ali Babar, and I. Gorton

The entities in the loan processing system should not be aware of the existence of
those extra controlling entities that perform self-management. This helps to achieve
separation of concern for promoting extensibility and maintainability. Changes to the
quality of service management and control can be realized without modifying the
business logic implementation and deployment.

4.3 Determining Pattern Alternatives

These key scenarios and their requirements motivate a self-managing architecture that
enables periodic monitoring and adaptation according to the state of external services.
The context and problem descriptions of M-A-P-E and policy point patterns fit in the
solution space of this self-managing architecture. We therefore follow the evaluation
steps described in section 3 to refine the solution based on these two patterns.

Quality attributes affected. Fault prevention and fault tolerance are the two means
adopted to achieve reliability and maintainability. For fault prevention, periodic moni-
toring can help diagnose and detect service failures on-the-fly. The malfunction of a
service can trigger a proactive action to recover a system from failures and faults. For
fault tolerance, service redundancy is adopted to failover the malfunctioned services
to backup ones. However, the failover service requires adaptive capabilities to be able
to flexibly switch back to the primary service when the service is back to normal
status. This may be because, for example, the primary service provider may provide
substantial discounts under certain usage quotas.

In realizing these mechanisms, two more quality attributes are affected, program-
mability and risk. Programmability is concerned with the availability of the required
mechanisms in the middleware, which determines the feasibility of a pattern imple-
mentation. Risk covers computing overhead, the availability of the control manage-
ment, and the consequences of control management failure.

Metrics for measurement. We consider the qualitative metrics listed in Figure 1.
Quantitative metrics are not within the scope of this paper because the evaluation is
performed in a lab environment to illustrate the method itself. This is because the meas-
urements of quantitative metrics, such as job failure ratio, throughput or response times,
will have limited value when translated into a real system in a production environment.

Pattern implementation alternatives. The M-A-P-E and policy point patterns are
realized using mechanisms and techniques from the Mule ESB. Figure 3 shows the
resulting architecture that enables the self-managing capability. The grey colored com-
ponents are from the original loan processing systems. The rest are extra components
introduced to realize the self-managing architecture. The arrows indicate data flows.

In this architecture, the Test Data Generator generates test request messages and
sends them to the primaryCreditRequest queue. A test message includes the reply
address so that a testReply queue is dedicated for directing the replying messages to
the Test Data Verifier component. The verifier not only checks the accuracy of the
data but also measures the response time for processing a request message by an ex-
ternal credit bureau. It notifies the controller by sending a request message for con-
trolling the action through a dedicated controlRequest queue.

One requirement for the test message generation is that the injection rate should
not introduce significant workload to the primary service. A presetting of the injection

 Middleware Architecture Evaluation for Dependable Self-managing Systems 197

Fig. 3. Self-managing architecture of failover control

rate may serve well under light workload. However, when the primary service is
stressed the test data generator should adjust to a slower rate or even stop generating
any further test messages until the workload is reduced. This intelligence helps
achieve the reliability of the self-managing service. The smart proxy design pattern
[9] can be applied which employs a smart proxy component between the test data
generator and the primary credit bureau.

The important control conditions are defined in policies. The controller component
is responsible for interpreting the policy specification and making decisions on actions
according to the run-time information collected by the test data verifier. The decision
message is sent to a context-based router through the routeControl queue. The router
has a connection with a secondary credit bureau through the backupCreditRequest
queue. The reply message from the secondary credit bureau passes through the
creditReply queue the same as the primary service. A translator in front of the
creditReply queue translates the data format from the secondary service into the pri-
mary one, if there is difference in data format between the primary and secondary
services.

Apart from the M-A-P-E and policy point patterns, this architecture also uses other
integration patterns, including smart proxy, return address, context-based router and
message translator [9]. These integration patterns are embedded in M-A-P-E and
policy point patterns. They help to customize these two patterns to realize the key
scenarios in the context of fault tolerance and fault prevention. Table 1 provides a
summary of mapping between patterns and the architecture components.

With regards to the pattern variants, the M-A-P-E pattern forms a loosely coupled
self-managing architecture. Components involved in the pattern do not directly invoke
each other, rather the Mule ESB routes messages from one component/service to
another. The policy management in this case study is simple. There are two policies,
one for data correctness and one for response time. These policies are dependant on
each other.

198 Y. Liu, M. Ali Babar, and I. Gorton

4.4 Identify Middleware Mechanisms

The middleware mechanisms that can support the flexible plug-in of new components
are required to implement the design patterns shown in Table 1. Of most interest to
this evaluation are the infrastructure components provided by Mule to assist self-
managing architecture designers to monitor, intercept messages and adapt the system
behavior based on the current environment. Mule provides a set of default routers
which control and manipulate events received and dispatched by a component. In the
router configuration file, Mule supports a property <reply-to address/>, which can be
employed to realize the return address design pattern.

Table 1. Design Patterns and Architecture Components

Pattern Components
Monitor Test data generator, timer, testReplyQueue

Analyse Test data verifier, controlRequestQueue
Plan Controller, policy

M-A-P-E

Execute routeControlQueue, router, backupCreditRequestQueue,
translator

PIP Test data verifier
PDP Controller

Policy
Point

PEP routeControlQueue, rounter
Smart Proxy Smart proxy
Return Address testReplyQueue, Test data verifier
Context-based Router Router
Message Translator Translator

In Mule, a content based router FilteringOutboundRouter can use filters to determine

whether the content of the event matches a particular criteria, and if so it will route the
event to one or more endpoints of the configured destination services on the router.
Any outbound routers that extend FilteringOutboundRouter can apply a filter to it.

Mule supports the implementation of user specified router interfaces in a system.
The deployment of a router can simply be specified in a Mule configuration file. This
allows new components to be connected through messages directed by a router in
between.

With regard to a monitor’s runtime status, Mule provides interceptors, which allow
a developer to intercept message processing on a Mule Unified Message Object
(UMO) component and potentially alter the processing and outcome. They also allow
various crosscutting concerns such as logging to be unobtrusively woven into compo-
nents that were not originally designed to have such features. A UMO interceptor
completely overrides control of the UMO component and takes control of the event.
The UMO interceptor has the freedom of manipulating the event before and after the
execution of the UMO component.

With these mechanisms, patterns in Table 1 can be implemented through configura-
tion or extension at the API level. The smart proxy is the most complicated component.
It implements a workload control algorithm, which uses a window size to control the

 Middleware Architecture Evaluation for Dependable Self-managing Systems 199

pace that test messages are sent to the primary credit bureau. Details of the smart proxy
design and implementation are described in [7]. However its integration with the rest
of the self-managing architecture also employs the above mentioned mechanisms.

4.5 Define Quality Attribute Scale

The attribute scale definition is listed in Table 2. We can perform qualitative impact
analysis of maintainability by estimating how easily changes can be made to the ar-
chitecture and its components. The risk attribute evaluates the reliability and avail-
ability of self-managing service itself. It has three sub-categories, namely overhead,
availability and failure severity. For example, the attribute failure severity is dedicated
to rank the severity of impact if the self-managing service fails. In this paper, we
adopt the severity classification used in [17].

Table 2. Scale Definition of Metrics

Scale Definition Quality
Attribute High Middle Low

Maintainability Only changes in
configuration or
implementation for
setting properties
are required

Changes for
configuration and
out-of-box
implementation
are required

Customized
implementations
are required using
middleware
templates, patterns
or frameworks

Programmability Middleware has
full support

Supported but with
limitation

Not supported

Overhead Overhead ratio is
over 15%

Overhead ratio is
less than 15%

Overhead ratio is
lower than 5%

Availability No single point
failure

only one single
point of failure

The number of
single points of
failures > 1

Risk

Failure
Severity

(aka critical) A
failure may cause
major system
damage or loss of
production.

(aka margin) A
failure may cause
minor system
damage, or delay
or minor loss of
production.

(aka minor): A
failure may not
cause system
damage, but will
result in
unscheduled
maintenance or
repair.

We use a coarse grained scale, defined as high (H), middle (M) and low (L). We

did not adopt an ordinal scale (e.g., 1 to 5) because the values do not truly represent
the differences between scales in ratio or distance. In fact, the differences in their
values only give indications of their relative rankings. If needed, the scaling definition
can be refined later to be more fine-grained or use ordinal scale. The rating scale
definition is applicable to each of the sub categories of risk and programmability. For
programmability, we consider its evaluation for individual design patterns and aggre-
gate the results. In order to aggregate the overall rating from those ratings given to
individual sub categories, each sub-category has to be weighted. The value of the

200 Y. Liu, M. Ali Babar, and I. Gorton

weight represents how much the sub category contributes to the overall risk assess-
ment. The scale definition as High, Middle and Low must be assigned some value and
then the overall rating can be calculated. Finally the rating in the form of number is
converted back into the descriptive form as High, Middle or Low. The value assigned
can be arbitrary as it is just used as a means for calculation. A simple algorithm is
used for calculation as shown in Table 3.

Table 3. Simple algorithm for calculating rating

1. Assign values to High, Middle and Low to convert the
rating of each sub-category into values correspondingly.

3/1,3/2,1 ←←← LMH
2. Calculate the overall rating based on weight and the

converted rating of each sub-category

∑∑
==

=×=

n

i
n

n

i
nn WeightRateWeightRate

11

)1(

where n is the number of sub-categories
3. Convert back the value of the overall rating into the

descriptive form.

⎪
⎩

⎪
⎨

⎧

≤<

≤<

≤<

←

)3/10(

)3/23/1(

)13/2(

RateL

RateM

RateH

Rate

4.6 Evaluation

The overhead of risk analysis is evaluated by measuring the computing overhead
introduced by extra components in the self-managing architecture. However it is
technically complicated to measure an accurate roundtrip time for a test message
going through the whole execution path, because the messages are sent asynchro-
nously between queues. Although time stamps can be attached to messages, the extra
overhead of correlating messages will eventually lead to inaccurate measurement.
Instead we evaluate the overhead using an approximation. It is insignificant that the
time spent on sending a control message to the router to direct business messages to
the secondary credit bureau. Therefore, most computing of self-management is in the
test data generator, test data verifier and the smart proxy.

Our overhead measurement collects data of the overall throughputs and the CPU
usage when these self-managing components are enabled and disabled respectively.
The injection rate of the test messages is approximately 5% to 10% of the workload.
As can be seen in figure 4, when the self-managing components are running, the CPU
utilization (around 40%) and throughput (around 6 requests/second) averages are
consistent with those measurements when self-managing components are disabled.
We can therefore conclude that there is no significant performance impact in running
our adaptive solution under the condition that injection ratio is less than 10% of the
normal workload.

 Middleware Architecture Evaluation for Dependable Self-managing Systems 201

(a) self-managing components enabled

(b) self-managing components disabled

Fig. 4. CPU overhead of computing adaptation logic

For the rest of the qualitative evaluation, of quality attributes, the development team
gave ratings for each quality attribute based on the detailed architecture descriptions,
the rating scale definition and the middleware-based implementation in section 4. In
this case study, the developer who participated in the architecture design and prototype
implementation provided ratings. The correlation of scores between/among two or
more evaluators who rate on the same scale can be estimated to measure the homoge-
neity of their ratings using an inter-rate reliability analysis method [8].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Maintainability

ProgrammabilityRisk
Self-managing

Fig. 5. Overall evaluation results

202 Y. Liu, M. Ali Babar, and I. Gorton

The overall results are presented in a radar diagram in Fig. 5 with each axis represent-
ing an individual quality attribute. Fig. 5 demonstrates how a self-managing architecture
based on Mule performs with respect to attributes of dependability. The architecture has a
high maintainability because Mule has provided efficient mechanisms to easily plug-in
and out components in order to form different service structure. The programmability is
at the high end of the middle ranking range. This means design patterns can be imple-
mented using Mule with reasonable programming efforts to extend its default routers and
interceptors. For the reported case study, it took less than 100 hours per person to imple-
ment the most complicated self-managing component, the smart proxy. The result shows
this architecture has middle range risks because the availability of this self-managing
architecture depends on the reliability of message queues (hosted by other messaging
middleware). The malfunction of the self-managing architecture is less likely to result in
critical damages to the whole system, however it can affect the service level agreement of
the loan request processing.

5 Related Work

Many research efforts have been dedicated to ensure conformance between architec-
ture quality attributes and implementation. Yacoub and Ammar [17] proposed a quan-
titative method for reliability risk assessment at the architecture level. The method
used dynamic complexity and dynamic coupling metrics of implementation to define
risk factors for the architecture elements. This method is based on component-based
systems in which implementation entities explicitly invoke each other. The analysis
method for this tightly coupled architecture is not suitable for loosely coupled service
oriented architectures without extension. It remains our future work to integrate this
method to do quantitative evaluation.

Our approach does not ignore or conflict with existing scenario-based architecture
evaluation methods [5] or other approaches to analyzing dependability and its risk
factors [4]. Rather, it extends and complements them by decomposing design pattern
contexts and solutions into the architecture evaluation steps.

6 Conclusion

The design patterns described in this paper support the design of self-managing archi-
tecture that have fault tolerance and fault prevention as first class requirements. Im-
plementation of these design patterns is heavily dependent on middleware mecha-
nisms and techniques at the platform level. In this paper we propose an architecture
evaluation method that focuses on middleware and design pattern integration. The
contribution of this paper is a middleware evaluation method dedicated for pattern
centric self-managing architectures. It has three main characteristics:

• It evaluates middleware architecture in the context of patterns and their vari-
ants, which allows fine-grained evaluation of middleware architecture;

• It explicitly captures key self-managing scenarios as functional scenarios,
which encompasses the middleware’s ability to preserve safe changes.

• Conducting both qualitative and quantitative evaluations.

 Middleware Architecture Evaluation for Dependable Self-managing Systems 203

The directions for future work include integrating further quantitative risk factor
analysis for self-managing architectures and tools to document the evaluation results
as reusable knowledge.

Acknowledgement

National ICT Australia is funded through the Australia Government's Backing Austra-
lia's Ability initiative, in part through the Australian Research Council.

References

[1] A Primer on Policy-based Network Management, Hewlett-Packard Company (1999),
 http://www.openview.hp.com/Uploads/primer_on_policy-
 based_network_mgmt.pdf

[2] Ali Babar, M., Gorton, I.: Comparison of Scenario-Based Software Architecture Evalua-
tion Methods. In: 11th Asia-Pacific Software Engineering Conference, pp. 600–607 (2004)

[3] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on dependable and secure com-
puting 1(1), 11–33 (2004)

[4] Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes Discovered through Architec-
ture Evaluations. In: Proceedings of the Sixth Working IEEE/IFIP Conference on Soft-
ware Architecture WICSA, vol. 1. IEEE Computer Society, Los Alamitos (2007)

[5] Bosch, J., Bengtsson, P.: Assessing Optimal Software Architecture Maintainability. In:
Proceedings of the 5th European Conference on Software Maintenance and Reengineer-
ing (CSMR), vol. 168. IEEE Computer Society, Washington (2001)

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, Chichester (1996)

[7] Chiu, R.: Enhance the Adaptivity of Integrated Services in SOA, Undergraduate Thesis,
University of New South Wales, Australia (October 2007)

[8] Cronbach, L.J.: Coefficient alpha and the internal structure of tests. Psychometrika, 297–
333 (1951)

[9] Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploy-
ing Messaging Solutions. Addison-Wesley Professional, Reading (2003)

[10] IBM online article, An architectural blueprint for autonomic computing, (October 2004),
 http://www.ibm.com/developerworks/autonomic/library/ac-
 summary/ac-blue.html

[11] Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: 2007 Fu-
ture of Software Engineering. ICSE, pp. 259–268. IEEE Computer Society, Los Alamitos
(2007)

[12] Liu, Y., Gorton, I., Bass, L., Hoang, C., Abanmi, S.: MEMS: A Method for Evaluating
Middleware Architectures. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA
2006. LNCS, vol. 4214. pp. 9–26. Springer, Heidelberg (2006)

[13] Liu, Y., Gorton, I.: Implementing Adaptive Performance Management in Server Applica-
tions. In: International Workshop on Software Engineering For Adaptive and Self-
Managing Systems (SEAMS 2007), ICSE, pp. 12–21. IEEE Computer Society, Los
Alamitos (2007)

204 Y. Liu, M. Ali Babar, and I. Gorton

[14] Martin, P., Powley, W., Wilson, K., Tian, W., Xu, T., Zebedee, J.: The WSDM of Auto-
nomic Computing: Experiences in Implementing Autonomic Web Services. In: Interna-
tional Workshop on Software Engineering For Adaptive and Self-Managing Systems
(SEAMS 2007), ICSE, pp. 9–18. IEEE Computer Society, Los Alamitos (2007)

[15] Mule Enterprise Service Bus,
 http://mule.mulesource.org/wiki/display/MULE/LoanBroker

[16] Srivastava, B., Bigus, J.P., Schlosnagle, D.A.: Bringing Planning to Autonomic Applica-
tions with ABLE. In: Proceedings of the First international Conference on Autonomic
Computing (ICAC 2004), pp. 154–161. IEEE Computer Society, Los Alamitos (2004)

[17] Yacoub, S.M., Ammar, H.: A Methodology for Architecture-Level Reliability Risk
Analysis. IEEE Trans. Softw. Eng. 28(6), 529–547 (2002)

[18] White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Segal, A., Kephart, J.O.: Autonomic
computing: Architectural approach and prototype. Integr. Comput.-Aided Eng. 13(2),
173–188 (2006)

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 205–219, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Comprehensive Architecture Evaluation and
Management in Large Software-Systems

Frank Salger1, Marcel Bennicke2, Gregor Engels1,3, and Claus Lewerentz2

1 sd&m AG, Carl-Wery-Straße 42, 81739 München, Germany
frank.salger@sdm.de

2 Brandenburg University of Technology, Postbox 101344, 03013 Cottbus, Germany
{mab,cl}@informatik.tu-cottbus.de

3 University of Paderborn, s-lab, Warburger Str. 100, 33098 Paderborn, Germany
engels@upb.de

Abstract. The architecture of a software system is both a success and a failure
factor. Taking the wrong architectural decisions may break a project, since such
errors are often systematic and affect cross-cutting aspects of the system to be
built. Moreover, software projects get more and more challenging due to the ris-
ing complexity and dynamics of business processes, large team size and distrib-
uted development. As the software architecture is the common platform for
many project activities, it constitutes a critical success factor. Thus, a compre-
hensive method for evaluating a software architecture and propagating impor-
tant properties of it downstream to code is needed. At sd&m, we designed a
comprehensive architecture evaluation and management framework in order to
satisfy these needs. In this paper, we derive a list of requirements, such a
framework should fulfill. We then present the components of our architecture
evaluation method and demonstrate, how it fulfills these requirements.

1 Introduction

Conceptual errors in software development can get very expensive quickly: They can
slow down the process due to badly defined responsibilities of components. They can
make the system difficult to be changed, extended, maintained, and tested. Or they
can give rise to inaccurate estimations, which themselves lead to wrong project plans
and failed deadlines. In the context of ever growing complexity of business processes,
project sizes, time pressure as well as massive distributed development, the soundness
and appropriateness of both, development artefacts and processes are more important
than ever for project success. Hence, comprehensive methods to evaluate and con-
tinuously manage the maturity of all aspects of the development process are needed.

One of the business areas of sd&m is the design and the development of information
systems for business-critical processes of our customers. The soundness, appropriate-
ness and maintainability of our software architectures is one major success factor of
such projects. Many methods like ATAM, ARID or SAAM [1] have been devised in
order to assess software architectures. By using dedicated approaches and viewpoints,
some of the methods particularly enable analyzing specific aspects or artifacts in detail,
neglecting others. Also these methods need to be tailored towards a particular context

206 F. Salger et al.

in order to be efficient and effective. For example, the quality of results of an ATAM
evaluation largely depends on discovering relevant architectural decisions. Eventually
such evaluations are intended to be executed at a given point in time, but do not con-
tinuously monitor the development process. Hence, a single of these methods is not
sufficient in order to fully address all architectural concerns of a software project and
enabling the evaluation to be performed efficiently.

The high-level objectives of a comprehensive architecture evaluation and man-
agement framework are:

• To evaluate, whether the needs of the customer are supported by the software ar-
chitecture.

• To determine, whether the architecture constitutes an appropriate solution for the
problem.

• To secure, that the architecture serves as a robust fundament for the following
development activities.

• To enforce the defined fundament for the following development activities.

In this paper, we present the two architecturally relevant components of our archi-
tecture evaluation and management framework - the architecture quality gate and the
architecture management process. We show how the architecture quality gate and the
architecture management can be embedded into the software development process
and how they interact.

In the next section, we elaborate on the requirements that have to be fulfilled by a
comprehensive architecture evaluation method. In section 3, we describe our concept
for quality gates at sd&m in general and the architecture quality gate for business
information systems in particular. Section 4 explains the architecture management
process and its interrelations with the architecture quality gate. We then report on
successful applications of our framework in large projects at sd&m. Finally, we draw
our conclusions and indicate future work.

2 Requirements for Software Architecture Evaluation Methods

In this section, we discuss and motivate the requirements that should be fulfilled by a
comprehensive evaluation method for software architectures.

1. The method checks whether the architecture addresses all architecturally
relevant requirements in a balanced manner
The method should support the assessor to spot incomplete, inconsistent or ambiva-
lent architecturally relevant requirements. As architecturally relevant requirements are
often interrelated with each other, the method should check whether the architecture
addresses the requirements in a balanced manner on which all stakeholders can agree.

2. The method should question the reasons behind the architecturally relevant
decisions
Software architecture can be seen as the earliest available set of design decisions in
the engineering process. As such, the chance should be taken to validate the decisions

 Comprehensive Architecture Evaluation and Management in Large Software-Systems 207

against the requirements as early and rigorously as possible. The method should pro-
vide a comprehensive set of key questions, in order to systematically address all criti-
cal areas of a software architecture.

3. The method should mitigate the problem of “getting routine blinded”
Everybody finds an error easier than the one who made it. Thus, it is essential, that the
method incorporates external expertise and draws on consolidated knowledge.

4. The method should include the evaluation of prototypes
In most of the process models for software development it is recommended to build
evolutionary prototypes, e.g.[2]. Usually, many coding templates are derived from the
evolutionary prototypes. Since these templates will be used by dozens of developers,
their quality can be critical to the success of the whole project.

Hence, in case of developed prototypes, the method must verify whether they are
really good enough to serve as team-wide templates. For explorative prototypes it
must be verified whether the predictions drawn from them are valid (e.g. the esti-
mated throughput concluded from prototype performance measurements).

5. The method must support the evaluation of both, processes and products
Obviously, the quality of a product is influenced by the process that creates it and an
architectural design must be aligned with the process that implements it (for example
with respect to assigning components to developers for implementation). Thus, both,
the product and its development process must be evaluated.

6. The method must assess artefacts generated in earlier activities which serve as
input to the design of the architecture and the following activities
For example it is reasonable to assess early in the requirements specification activity,
whether an appropriate specification method is used systematically. However, we
cannot be sure, whether this specification method is actually used in the iterations that
follow this assessment. Hence, we have to evaluate the requirements specification be-
fore we start construction. Of course, the focus will be different this time: We should
mainly assess, whether the “good practices” firmed by the specification assessment
where continued.

7. The method should foster consistency of artefacts downstream in the devel-
opment process
Due to time pressure, mid-course corrections or lacking overview, artefacts tend to
drift away from each other with negative effects on software product quality. The
method should include further processes that help to perpetuate the quality of the soft-
ware architecture.

We present an integrated framework which considers all of these requirements.

Requirements 1 through 6 are addressed by the specific design of the architecture
quality gate (section 3). Requirement 7 is addressed by the architecture management
process (section 4).

208 F. Salger et al.

3 Quality Gates at sd&m

sd&m AG – software design & management – develops high-performance custom
software solutions and provides consultancy services for all aspects of IT. Our cus-
tomer base boasts major enterprises from all sectors and public institutions, particu-
larly from the automotive, banking and insurance industries.

In order to securely finalize large scale development projects to the satisfaction of
our customers, we developed a quality framework consisting of selective and con-
tinuous evaluations.

3.1 Basic Concepts

At sd&m, software projects follow the process as indicated in figure 1. Quality gates
are comprehensive evaluations executed at specific points in time assessing the matur-
ity and sustainability of produced artefacts (milestones) and the processes followed to
produce them. We have developed quality gates for securing the quality of the tender,
the requirements specification, the architecture and the integration test. With our qual-
ity gates, we pursue the following high-level objectives:

Tender Specification

Design

Implementation

Integration test Production

Q
G

 Specification
Q

G
: A

rchitecture

Q
G

 Integration

Continuous integration

Component acceptance procedure

Test of functional requirements

Test of non-functional requirements

Gathering and control of maturity level metricsGathering and control of maturity level metrics

Q
G

 Tender

Fig. 1. Quality gates in context

• To make the maturity of development artefacts and processes transparent.
• To derive effective countermeasures for major problems encountered.
• To “standardize” audits to a reasonable extent.

The main characteristics of applying quality gates are:

• They are executed according to a defined quality gate process and end with a deci-
sion („Am I ready for the next step?“).

• They are no formal checks but evaluate the content of artefacts.
• They are conducted by sd&m-experts (senior developers not involved in the

project).

 Comprehensive Architecture Evaluation and Management in Large Software-Systems 209

Finalization:
-Defining results

-Lessons learned

Initialisation:
Setting up QGs

for project

Application:
Applying

initialized QGs

Gathering and
consolidation of
lessons learned

Adjustment and
controlling of QGS

Coaching and support
of projects

Initial definition
of QGs

QGP

Conceptual Level: Quality
Gate Management

Operative Level: Quality
Gate Process

Fig. 2. Quality gate processes

The quality gates together with the ongoing processes indicated in figure 1 consti-
tute our integrated framework used to develop high quality software. The continuous
gathering and control of maturity level metrics complements the milestone evalua-
tions by increasing the transparency of the quality of the produced results. In particu-
lar the architecture management process which addresses continuous architectural
concerns is part of the metrics collection process.

When we defined our quality gate concept, we considered international standards
and further literature that address the topic of defining audits, inspections or reviews
[3, 4, 5 6, 7]. However, we do not use ongoing formal statistical evaluation of the
quality gate results as suggested for inspections by [3] and [6].

As shown in figure 2, the quality gate concept at sd&m consists of two process
levels. The first level addresses the lifecycle aspects of quality gates, like the defini-
tion and improvement of the quality gates and the associated processes. The second
level addresses the operative aspects of the quality gates, like the initialization, the
application and the finalization of quality gate within one specific project.

3.2 The Architecture Quality Gate

Having presented the key ingredients of our quality gate concept, this section dis-
cusses the architecture quality gate in more detail. For our architecture quality gate we
considered the following evaluation methods and standards:

1. The architecture tradeoff analysis method (ATAM) of the SEI, Carnegie Mellon
University [1]. ATAM is a very powerful scenario-based method for evaluating
software architectures .We adapted it for our purposes.

2. The CMM(I), Version 1.2 of the SEI, Carnegie Mellon University [8]. We used
this process assessment model to derive questions to assess the architecturally rele-
vant processes.

3. ISO/IEC 15504 Part 2 and Part 5 [4, 9]. We used this standard to check the com-
pleteness of our “process questionnaire” (which will be presented below).

210 F. Salger et al.

4. ISO/IEC 9126 Part 1 [10]. The structure of our “architecture questionnaire” (which
will be presented below) has been inspired by this standard.

We now present the different evaluation steps that make up our architecture quality
gate. Not all steps need to be applied necessarily. By default, all steps are mandatory,
as long as it can be reasonably argued, that it can be omitted. Criteria exist upon
which the responsible assessor may decide to omit specific steps.

To some extend, the steps build upon each other in the sense, that the steps succes-
sively dig deeper into the actual quality of the architecture. However, their execution
order can be changed, if the projects context suggests it: In a project which consists of
multiple sub-projects, it could be sensible to check the effectiveness of cross-project
processes (like a centralized change management process) in the first step. If such
processes are not in place, the overall project has a serious problem, regardless of the
concrete software architecture.

Evaluation step 1: Requirements specification questionnaire
Motivation: Even a perfect software architecture will not help developers code the use
cases or functional requirements, if these are incomplete, contradictory or in a very
bad formal shape. Hence, after a software requirements specification (SRS) has ini-
tially been checked in the specification quality gate, we check its correct continuation
in the architecture quality gate by means of this questionnaire.
Objectives: To check whether (1) functional requirements be understood by the de-
velopers, and (2) the SRS was continued in the way, it was approved by our specifica-
tion quality gate.
Benefits: Approval that (1) the functional requirements are specified in a way under-
standable by the developers, (2) the SRS does not contain contradictions and can be
realized, and (3) the results of the specification quality gate have been considered.

Evaluation step 2: Architecture questionnaire
Motivation: We check a software architecture at a conceptual level as well as whether
the architecture complies with our sd&m standard QUASAR (quality software archi-
tecture, see [11]) for business information systems. However, this questionnaire is no
dogma. We accept answers which do not match the preferred answer but are reasona-
bly motivated.
Objectives: (1) To get a high-level overview of the architecture, (2) To pose detailed
questions about the architecture along three dimensions: 1) The “object” to be as-
sessed like “whole system”, “client tier”, “business tier”, “database architecture”, etc.
2) Development principles like “separation of concerns”, “low coupling”, “testabil-
ity”, etc. 3) The quality attributes of ISO/IEC 9126, like “usability”, “reliability”, etc.
This supports different views onto the architecture.
Benefits: (1) Impression of the quality of the specific parts of the system as well as the
system as a whole, (2) Confidence whether the architecture complies to QUASAR,
the sd&m standard for architectures of business information systems, and (3) Hy-
pothesis, were the real problems are, as input for the following methods like the
lightweight-ATAM and the hotspot-analysis.

 Comprehensive Architecture Evaluation and Management in Large Software-Systems 211

Evaluation step 3: Lightweight-ATAM
Motivation: The attribute utility tree1 plays a central role within ATAM. This tree
is generated from scratch in the “investigation and analysis” step of the ATAM
session.In order to speed up this time consuming step, we demand the full, project
specific attribute utility tree (which has also been checked and prioritized by the cus-
tomer) from the architect as input for the quality gate. Further, we demand a mapping
(called the “A-matrix”) of the key architectural decisions onto this attribute utility
tree. Based on these two inputs, the ATAM session can be conducted very efficiently.
Further, generating the utility-tree and the A-matrix forces the architect to reason
explicitly about his key architectural decisions. Basically, the results of the light-
weight-ATAM correspond to the results of the standard ATAM. However, the A-
matrix formalizes the ATAM-concepts of sensitivity- and tradeoff points as will be
explained in the case study section. To help the projects setting up their specific at-
tribute utility tree quickly, we provide a “standard” attribute utility tree geared to the
development of business information systems. We tailored ISO/IEC 9126 (Part 1) to
the type of systems we evaluate with our architecture quality gate.
Objectives: (1) By means of the creating the A-Matrix, the project creates precise
cross-cutting requirements and a mapping of the cross-cutting requirements to the ar-
chitectural decisions. Another goal is (2) the verification of the architecture against
the quality model of the customer.
Benefits: (1) Confidence, which architectural decisions bear high risks (like tradeoff-
points, sensitivity points and risks), (2) Identification of inconsistencies between re-
quirements, and (3) Confidence, that the system is build, the customer actually pays for.

Evaluation step 4: Prototype questionnaire
Motivation: Prototypes are used to explore requirements, estimate performance im-
pacts or serve as templates for dozens of developers. They should therefore be as-
sessed.
Objectives: (1) Check, whether an evolutionary prototypes is sufficiently mature to
serve as a template (e.g. compliance to coding style, robustness), (2) Check whether
the behaviour of the system to be built can really be inferred from the exploratory pro-
totypes.
Benefits: (1) Projects are motivated to build exploratory prototypes, (2) Confidence,
whether the code of evolutionary prototypes can be safely used as a template, and (3)
Statement about the validity of predictions made using the prototype or yet uncovered
risks,

Evaluation step 5: Hot spot analysis
Motivation: Having applied the aforementioned methods, the assessor should have a
very good grasp of the main problem areas allowing her to focus specific items after-
wards. The quality gate assessor (which is a senior architect) should use her experi-
ence to sharpen the problems. This crisp problem description will then serve as the
basis for the definition of precise countermeasures.

1 The attribute utility tree basically is a quality model for the software system to be built, con-

sisting of quantifiable, prioritized requirements and consolidated by the stakeholders of the
architecture.

212 F. Salger et al.

Objectives: (1) Generating a list of the main architectural problems, and (2) Detailed
investigation of these problems.
Benefits: (1) Determination which risk these problems pose on the overall success of
the project, and (2) Definition of countermeasures by senior architects.

Evaluation step 6: Process questionnaire
Motivation: The previous steps concentrate on the evaluation of artefacts. However,
projects can also fail due to weak change management processes, or unrealistic pro-
ject plans for the development activities It is therefore necessary to check the proc-
esses used for the development of the architecture as well. We used CMM(I) and
ISO/IEC 15504 as an orientation to derive questions for this evaluation step.
Objectives: (1) Assessing the project management with respect to architectural con-
cerns and (2) assessing the quality management with respect to architectural concerns.
Benefits: Assuring (1) the appropriateness of the processes in place, (2) the appropri-
ateness of the processes for the following activities, and (3) a safe transition to the fol-
lowing development activities and phases.

The effectiveness of these steps has been evaluated with several large projects. The
concerted definition of the above steps and their application provides valuable syner-
gies. The architecture quality gate allows the assessor to question all decisions made
so far within the project and evaluate them in the full context. It is designed such that
it allows suspicious issues discovered in one step may be scrutinized by another step.
Yet the evaluation is structured and well-integrated with the constructive development
process to be efficient. Section 5 gives some examples from the evaluations of the ar-
chitecture quality gate.

4 Architecture Management

4.1 Motivation

The overall goal of the entire evaluation framework sketched in section 3.1 is to
eliminate risks jeopardizing delivery of a high-quality product within time and
budget. Upon completion of the architecture quality gate, there is general approval
that the so-far designed artifacts based on the available information will fulfill the
end-user requirements as well that the preconditions for efficient execution of the re-
maining process phases are met. Particularly, the quality gate verifies whether com-
mon goals such as performance, maintainability, reusability and team buildability are
supported by architectural decisions. However the execution of the following phases
poses new risks. For example, there remain risks of not meeting performance and reli-
ability goals when the system operates under real-world conditions or there remains a
risk that badly developed source code may slow down the entire process (due to bad
documentation, frequent changes or bug fixes). These and other risks are handled by
the outlined continuous gathering and control of maturity level metrics. This process
activity collects metrics from static and dynamic tests of the product as well as sup-
porting systems that characterize results of the process (e.g. error tracking system,
configuration management, time tracking system). In the following we outline one
such measurement process, that deals with the static module view onto a system.

 Comprehensive Architecture Evaluation and Management in Large Software-Systems 213

4.2 Dependency Management

A particular risk that endangers the conclusions drawn from architectural decisions is
that the implementation may drift away from an initially developed design and the
system documentation. The drift surfaces in structural mismatches between as-
planned/as-documented and as-implemented modules and the uncontrolled creation of
dependencies between modules during the implementation phase. The detrimental ef-
fect of dependencies on the quality of software and their interactions with organisa-
tional structures has long been identified by several researchers (see e.g. [12, 13, 14]).
Keeping the code in sync with its design is important since many evaluations carried
out at the architecture quality gate and the setup of the following phases build upon
the designed structure and become invalid as the actual structure diverts from it. On
the other hand, the drift certainly does not occur suddenly and deliberate, but in the
light of time pressure and changing requirements rather gradually and unintended.

Dependency management is about controlling the consistency between an abstract
high level model describing planned modules and dependencies and the implemented
software system realized as packages, classes and (source code) files stored in a file
system. In the past, several conceptual approaches and tools have been proposed to
describe and perform this kind of consistency checks ([15, 16, 17, 18, 19, 20] to name
a few). Which of these approaches fits best in a particular context, depends on factors
such as intended major use case, capability to describe the system structures to be
monitored including their evolution, scalability and ease of integration with the exist-
ing tool environment.

Performing consistency checks requires the following parameters as inputs:

• An as-designed high-level model of the software architecture. The model defines
all subsystems and their allowed or required dependencies. The dependencies
specification covers inter-subsystem relationships as well as relationships with ex-
ternal components that a project chooses to use.

• A mapping between each architectural subsystem and the code that implement this
subsystem.

Using this information a tool extracts an as-implemented model from the source
code and compares it to the as-designed model. The method unveils any differences
between the as-designed and as-implemented models of a software system.

If consistency checks should be applied, the required as-designed model and its
mapping to code should be fixed before entry into the implementation phase (cf. fig-
ure 1) with two goals

• It serves developers as a guideline on how the code must be structured.
• The code can be checked against the model right from the first line.

Thus, the process questionnaire of the architecture quality gate checks whether,
this information has been prepared during the design.

We employ consistency checks in two modes:

• Within the development environment: From our perspective consistency checks
must be executed within the development environment of every developer since
this generates prompt feedback. It prevents differences to occur right in the first

214 F. Salger et al.

place and to cumulate over time. However, this application mode has only local ef-
fects as each developer cleans up only those errors he is responsible for. We also
do not expect developers clean up every error instantly.

• During continuous integration: Second, we execute consistency checks as part of
our regular continuous system integration build and collect metric values about the
results of the checks. These metrics are made available to the architect to help him
asses the overall architectural quality and make decisions e.g. about where to
schedule refactorings next. The metrics quantify how much code is covered by the
analysis and indicate the degree of non-consistency. For example, the number of
unplanned dependencies is collected for the entire system and for each subsystem.

The resolution of a detected inconsistency requires either a change to the code or
even a change to the architecture and its documentation. Where code changes can eas-
ily be dealt with during implementation, a change of the architecture is handled within
the larger scope of a change management process if necessary.

To summarize, the interleaving of the architecture quality gate and the dependency

management process has the following benefits:

• The project is in a state to be able to perform consistency checks.
• The project closely follows the design such that assumptions made for the imple-

mentation phase continue to hold.
• Correctness of development documentation

5 Case Studies

In the following we present the application of the architecture quality gate and the ar-
chitecture management to demonstrate the effectiveness of the evaluation methods.
We selected methods of different types for demonstration: a questionnaire-type
evaluation, the lightweight ATAM evaluation method and the continuous architecture
management method.

5.1 Case Study 1: Effectiveness of the Architecture Questionnaire

The goal of this study was to confirm the architecture questionaire’s ability to pin-
point substantial problems. From a real world project, we sketch two of the posed
questions and the discovered problems in more detail:

Question: In which way does the customer define “quality” with respect to the archi-
tecture?

Rationale: If the architect does not know the consolidated quality model shared by all
stakeholders the customer, it is not clear whether the “right” system will be built, and
there is a high risk that the customer will not accept the built system. At least a stan-
dard like ISO9126 should be used to check the requirements for completeness.

Actual Answer: “We mainly talk with the IT-department in order to gather the re-
quirements and determine the quality attributes.”

 Comprehensive Architecture Evaluation and Management in Large Software-Systems 215

Since it is a requirements specification anti-pattern not to consider all stakeholders
of the application (in this case the user) this answer indicated a potential problem with
the requirements. A deeper investigation in the course of the quality gate in fact
showed, that both, the use case model and the non functional requirements where
flawed and had to be reworked. We note, that it would not have been possible to use
ATAM in this project since the end users were not available during this specific pe-
riod. Nevertheless, we found the problem since the architecture quality gate uses dif-
ferent methods to evaluate architectures.

Question: How much functionality of the technical COTS are actually used?

Rationale: Functionality of COTS which is not used may develop into a product life-
time burden. The unused parts can be flawed. Due to compatibility reasons COTS
need to be updated even if the used functionality is not affected from the flaw. A
COTS update can be expensive as it may trigger a cascade of redeployments of com-
ponents into the end-user environment. If not the whole functionality of the COTS is
used, other COTS should be evaluated. Any unused functionality of a COTS should
be hidden by using an adapter.

Actual Answer: “We only use the ‘reminder functionality’ of the workflow compo-
nent.”

A deeper investigation showed, that this workflow component mandated an asyn-
chronous interaction with the application layer of the system adding a lot of complex-
ity. Later, the workflow component was removed and the “reminder functionality”
was implemented as a technical service within the system itself. It would be very hard
to cover this situation by use case-, growth- or exploratory scenarios. Hence, it seems
to be unlikely that we would have discovered this problem using e.g. ATAM only.

5.2 Case Study 2: Effectiveness of Lightweight ATAM

The goal of this case study was to verify whether our lightweight ATAM would still
enable us to uncover substantial risks such as inconsistencies of requirements, and in-
adequate architectural decisions.

Figure 3 shows a fragment form the full A-matrix. Requirements are arranged in
rows, architectural decisions in columns. The architectural decisions are related to re-
quirements by marking the appropriate cell with a “p” or “n”, meaning, that the deci-
sion has either a positive or a negative impact on the according requirement. A “0”
means no impact, a “W” indicates a conflict. The A-matrix formalizes the concepts of
sensitivity- and tradeoff points: Each “p” or “n” corresponds to a sensitivity point. A
column which contains at least one “p” and one “n” is a tradeoff point, since the ar-
chitecture decision in this column affects at least two adjacent requirements in an op-
posite way. This is the case the requirement U-1 “Resolution of 1280 x 900 pixel
must be possible” conflicts with the architectural decision IN-3 “Usage of clients
"standard-client", since the “standard-client” did not support this resolution. However,
this architectural decision was explicitly stated as a requirement (ADC-3). Hence, by
means of ATAM we revealed that the requirements ADC-3 and U-1 together lead to a
contradiction. A further benefit for this project was the further sharpening of require-
ments done during the ATAM session.

216 F. Salger et al.

Fig. 3. Fragment of the A-matrix

5.3 Case Study 3: Architecture Management

Being able to perform consistency checks as outlined above requires tools. Hence part
of this case study was to evaluate several consistency checking tools for their appro-
priateness in our context. A second goal was to quantify the drift between design and
implementation for a real-world system to verify there is actual need for this tech-
nique. The analysis has been conducted as a post mortem analysis after completion of
a system representative in terms of its size and architecture.

The as-designed model has been built according to the available design documents
and with the help of the project’s architect. The module structure is described by two
perspectives both of which are a direct result of the Quasar software design method
[11] used at sd&m. The so-called application architecture (A-architecture) defines dis-
tinct topics and their dependencies from a problem domain perspective. The technical
architecture (T-architecture) defines a technically motivated subdivision of the system
into distinct layers. Actual components arise from combining both perspectives. Usu-
ally a component stretches over one problem domain topic and several or all layers.

The resulting (simplified) overall architecture is shown in figure 4. The leading
column and line of the matrix show the T- and the A-architecture subdivision and the
allowed dependencies in each of these views (<<public>> means the module may be
used by any other module). Each of the matrix elements is a subsystem to which ac-
tual code can be assigned. Both, the A-architecture and T-architecture dependency

 Comprehensive Architecture Evaluation and Management in Large Software-Systems 217

payment

phandl
serviceh

pricing

allotments

schedule

party

<<public>>
general

A-architecture

T-architecture

a component

Client

Server

Common

Fig. 4. Architecture of the passenger transportation system

definitions apply to the code of each subsystem. In this example the T-architecture de-
fines a client part, a server part and a common part which establishes communication
between the client and server parts. Each of these parts has further sub-layers.

The entire system is about 1.45 Million lines of code, where the above model cov-
ers about 1.2 Million lines of code (82 %). There were no high-level modules without
code.

The above matrix can almost directly be modelled using a consistency checking
tool called SonarJ [18]. The mapping of code to each of the subsystems was some-
times difficult, as SonarJ can only assign entire packages whereas some packages
contained code that would have to be assigned to different subsystems. Also, from the
source code it became visible that some domain components actually contain further
sub-components which could be used to refine the above model. However, they were
ignored for this analysis.

The result of comparing the T-architecture was that the division of the client, server
and common parts has been implemented as planned. No single divergence has been
found in this perspective. This is not surprising as the build and deployment process for
the software forbids anything else. However, when the detail of the T-architecture is
increased and also sub-layers are modelled, unplanned dependencies within the server-
part became visible. Results are much different for the A-architecture. In total, there
are 13421 unplanned dependencies between the above mentioned modules (see figure
5). All domain components have unplanned dependencies. In particular, the component
“general” which was intended to be independent from other subsystems depends upon
all other subsystems. Second, many mutual dependencies have developed which can
make components hard to understand or test independently.

The architecture model of this system is typical for the business information sys-
tems sd&m builds for its customers. Thus, there are good chances, other systems can
be covered with this matrix-like style to describe architectures. The case clearly illus-
trates that without constant monitoring or other forces in place the dependency struc-
ture erodes already during the initial implementation of a system. It also illustrates the
need to have the source code organized such that it is suitable for consistency checks
– a point that will be included in the architecture quality gate to ensure applicability of
this technique.

218 F. Salger et al.

component # divergences
servicehandling 7627
schedule 1598
pricing 1422
allotments 1113
general 827
payment 485
phandl 213
party 136

Fig. 5. As-implemented A-architecture of the passenger transport system and number of diver-
gences caused by each subsystem.

6 Conclusion and Future Work

We presented the basic ideas of the overall quality assurance framework at sd&m in
general and highlighted the architecture quality gate and the dependency management
process in particular. By applying our architecture quality gate we ensure that the
critical architectural decisions are resolved such that

• the business need of the customer is addressed by the architecture,
• the non functional requirements are supported,
• the architecture can be used as a firm and stable platform for the developers and

testers,
• the current processes are precise, communicated and followed,
• and the processes for the following activities are in place and reasonable.

As such, we make sure the architecture supports the project to be finished in time
and budget satisfying the customer. The architecture management process ensures the
system properties fixed in the architecture continue to hold throughout the following
process phases. Keeping the implementation in sync with its design facilitates effi-
ciency of the process. As the design is usually part of a system’s development docu-
mentation, the transition into future maintenance activities is also improved.

We reported on some applications of parts of the architecture quality gate and the
architecture management to large scale systems and showed which benefits can be
obtained.

The presented architecture quality gate is optimized for the evaluation of architec-
tures of business information systems. Part of our future work will be the definition of
an architecture quality gate for business intelligence applications as well as quality
gates for the requirements analysis phase and the integration testing. We also aim at
further refining the architecture management aspect. One goal is to define standard T-
architectures for recurring types of components such as user dialogs, data manage-
ment or reporting and develop a model based consistency checking approach that can
cover such component types. Second, we intend to include analyses in the architecture
management process that address further fundamental system properties defined by
the architecture (e.g. error handling strategy).

 Comprehensive Architecture Evaluation and Management in Large Software-Systems 219

References

1. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures Methods and
Case Studies. Addison-Wesley, Reading (2002)

2. Rational Unified Process. IBM Coporation. Version 7.0.1. 2000 (2007)
3. Fagan, M.: Advances in Software Inspections. IEEE Transactions on Software Engineer-

ing 12(7), 744–751 (1986)
4. ISO/IEC 15504-2:2003(E). Software engineering — Process assessment — Part 2: Per-

forming an assessment
5. IEEE Std. 1028-1997 – Standard for Software Reviews. The Institute of Electrical and

Electronics Engineers, Inc. New York (1997)
6. Gilb, T., Graham, D.: Software Inspection. Addison-Wesley, Reading (1993)
7. Wiegers, K.E.: Peer Reviews in Software – A Practical Guide. Addison-Wesley, Reading

(2002)
8. CMMI® for Development, Version 1.2. CMU/SEI-2006-TR-008, ESC-TR-2006-008.

Carnegie Mellon, Software Engineering Institute (2006)
9. ISO/IEC 15504-5:2006(E). Information technology — Process assessment — Part 5: An

exemplar process assessment model
10. ISO/IEC 9126-1:2001(E). Software Engineering — Product Quality — Part 1: Quality

Model
11. Haft, M., Humm, B., Siedersleben, J.: The Architect’s Dilemma – Will Reference Archi-

tectures Help? In: Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S.,
Schroeder, P.J. (eds.) QoSA 2005 and SOQUA 2005. LNCS, vol. 3712. pp. 106–122.
Springer, Heidelberg (2005)

12. Conway, M.: How Do Committees Invent? Datamation 14(4), 28–31 (1968)
13. Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Modules.

CACM 15(12), 1053–1058 (1972)
14. Lakos, J.: Large-Scale C++ Software Design. Addison-Wesley, Reading (1996)
15. Murphy, G.C., Notkin, D., Sullivan, K.: Software Reflexion Models. Bridging the Gap Be-

tween Source and High-Level Models. In: Proc. of the Third ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pp. 18–28. ACM Press, New York (1995)

16. Koschke, R., Simon, D.: Hierarchical Reflexion Models. In: Proc. of 10th Working Con-
ference on Reverse Engineering (WCRE 2003), pp. 36–45. IEEE Computer Society, Los
Alamitos (2003)

17. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using Dependency Models to Manage
Complex Software Architecture. In: Proceedings of the 20th annual ACM SIGPLAN con-
ference on object oriented programming, systems, languages, and applications, OOPSLA
2005, pp. 167–176. ACM Press, New York (2005)

18. SonarJ vendor homepage, http://www.hello2morrow.com
19. SotoArc vendor homepage, http://www.software-tomography.com
20. Becker-Pechau, P., Bennicke, M.: Concepts of Modeling Architectural Module Views for

Consistency Checks Based on Architectural Styles. In: Smith, J. (ed.) Proc. of the 11th
IASTED International Conference on Software Engineering and Applications (SEA 2007),
Acta Press (2007)

Sharing the Architectural Knowledge of

Quantitative Analysis

Anton Jansen1, Tjaard de Vries1, Paris Avgeriou1, and Martijn van Veelen2

1 University of Groningen, Department of Mathematics and Computing Science,
P.O. Box 800, 9700AV Groningen, The Netherlands

anton@cs.rug.nl, tjaard@tjaard.nl, paris@cs.rug.nl
2 ASML, DE-SSD, Litho Systems Architecture

5504DR Veldhoven, The Netherlands
martijn.van.veelen@asml.com

Previously employed by ASTRON
P.O. Box 2, 7990AA Dwingeloo, The Netherlands

Abstract. Sharing the architectural knowledge of architectural analysis
among stakeholders proves to be troublesome. This causes problems in
and with architectural analysis, which can have serious consequences
for the quality of a system being developed, as this quality might be
incompletely or wrongly assessed. This paper presents a domain model,
which can be used as a common ground among analysts and architects
to capture and explicitly share such knowledge. This enables a way to
overcome some of the obstacles imposed by the multi-disciplinary context
in which architectural analysis takes place. To apply the domain model
in practice, we have created a tool implementing (part of) this domain
model for capturing and using explicit architectural knowledge during
analysis. We validate the tool and domain model in the context of an
industrial case study.

1 Introduction

Expectations, and therefore demands, on the quality of systems are ever in-
creasing. More and more systems become software-intensive systems, in which
software plays a crucial role in the delivery of the required functionality. Conse-
quently, the quality of these systems is greatly influenced by the quality of the
software. Software architectures offer the ability to predict the expected qual-
ity of a software system before it is actually implemented or changed [1]. This
architectural analysis gives engineers a tool to find out which kind of software
system is optimal for their system needs, without implementing the (changes to
the) software beforehand.

Architectural Knowledge (AK) [2,3,4] plays a crucial role in architectural anal-
ysis, as it is this knowledge an analyst consumes and produces [5]. System an-
alysts are often experts in certain domains and use or consume AK to analyze
(parts of) an architecture. During the analysis, AK is produced by analysts,
which ranges from individual analysis results to new insights into the overall
behavior of the design space.

S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 220–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sharing the Architectural Knowledge of Quantitative Analysis 221

However, sharing an architectural analysis among system analysts and other
relevant stakeholders proves to be problematic. To fully understand the results
of an architectural analysis, the AK consumed to produce these documents and
models is required as well, since this AK explains the reasoning path the ana-
lyst used to come up with the analysis result. Often not all of this knowledge
is shared. This incomplete AK sharing can have repercussions for the quality of
the analysis, thus negatively affecting the quality of the realized or changed sys-
tem. Typically, these repercussions include: (1) difficult communication among
stakeholders/analysts, (2) troublesome integration of analysis results of different
analysts and (3) incomplete documentation and traceability of the analysis itself.

The incomplete AK sharing has two major causes. First, awareness is often
missing of which AK is relevant to share. Second, the multi-disciplinary context,
i.e. the very different backgrounds of the stakeholders and analysts, creates an
obstacle to sharing this knowledge.

In this paper, the focus is on sharing the AK of quantitative analysis. First, the
needs are identified for sharing this AK. Based on this, the AK relevant to share
is identified and described in a domain model. The domain model describes this
knowledge independently of the background of the stakeholders and analysts,
thus creating a common ground, which to some extent can prevent issues arising
from the multi-disciplinary context.

The rest of this paper is organized as follows. Section 2 presents the needs
to share the AK of quantitative analysis. Section 3 presents a domain model
describing the AK of quantitative analysis relevant to share. This is followed
by section 4, which presents a tool for sharing this knowledge for one of the
identified needs. The domain model and tool are validated with a case study in
section 5. Related work is discussed in section 6 and the paper concludes with
conclusions and future work in section 7.

2 Sharing the AK of Quantitative Analysis

In software architecting, the evaluation of software architectures forms an impor-
tant activity [6]. Based on evaluation results, informed architectural decisions can
be made. Not only does this increase the confidence in the architectural design,
but also makes the design easier to defend, as objective rationale and alternatives
for the architectural decisions are available. One way to obtain such results is by
quantitative analysis. In quantitative analysis, one or more analysis models are
created to quantitatively analyze various potential architectural solutions. The
results of an analysis model are quantifications of one or more quality attributes.

Sharing the AK of quantitative analysis is required for the following three
cases:

• Integration. For complex systems, a divide and conquer strategy is often
used for quantitative analysis. The system is divided into subsystems, for
each of which analysis is performed by analysts, each with their own area of
expertise. Another way to divide the system is based on the relevant quality

222 A. Jansen et al.

attributes, each of which is to be analyzed by its corresponding experts.
Consequently, numerous analysis models are created.

However, to evaluate a system as a whole, the different perspectives the an-
alysts have on the architecture need to be combined. Hence, integration of their
analysis models is required. This requires the analysis models to be compatible
with each other, i.e. use the same kind of quantification and terminology for the
various quality attributes. In addition, assumptions made about the solutions
being evaluated in the analysis models should be synchronized to ensure that
all analysis share a common ground. Thus, considerable knowledge sharing of
the consumed and produced AK is required among the analysts.

• Verification. Another need for AK sharing comes from verification, i.e. the
need to verify the correctness, completeness, and consistency of the analysis
models. Typically, analysts let their models be reviewed by others, as to
find problems with their analysis. This is especially useful if the analysis is
performed on the boundary of the expertise of different analysts.

• Validation. A third need for AK sharing comes from stakeholders who want
(or need) to validate a design, i.e. want to have a clearer understanding of
the rationale used for an architectural decision. This knowledge can be used
to convince stakeholders of the appropriateness of an architectural decision,
e.g. in the form of traceability. Additionally, this can create further insight,
allowing the discovery of new and potentially better alternative designs.

3 Domain Model for Quantitative Analysis

3.1 Introduction

Before the AK of quantitative analysis can be shared, we need to know what this
knowledge entails. To discover this knowledge, we have investigated architectural
analysis in a particular organization: Astron, the Dutch national foundation for
research in Astronomy. One of their activities is performing quantitative architec-
tural analysis of radio and optical telescopes. In the new generation of telescopes,
software has become a dominant design factor. Astron analysts mainly perform
quantitative performance and cost analysis (see e.g. [7]), although qualities like
reliability and maintainability are quantitatively analyzed sometimes as well.

We closely cooperated with Astron analysts to find out which AK is consumed
and produced during their analysis. To describe this knowledge, we have devel-
oped a domain model. The model describes the concepts and the relationships
of this knowledge. It is based on informal interviews, inspection of various anal-
ysis models, software architecture documents and system analysts meetings. In
addition, we were inspired by some of the concepts and insights gained from the
Massive project, which delivered a tool for quantitative cost and performance
analysis of embedded systems of telescopes [8]. Furthermore, the domain model
has been improved in multiple iterations with the system analysts to make sure
that it reflects their practice.

Sharing the Architectural Knowledge of Quantitative Analysis 223

The aim was to come up with a unified domain model, which was indepen-
dent of the individual analysts, their quantitative modeling approaches, and the
qualities being analyzed, since only such a domain model would become effective
in tackling the multi-disciplinary boundary by providing a common ground. Al-
though the naming of many concepts in the domain model are specific to Astron,
most of the concepts will be likely found back under different names in other
organizations as well. To which extent this is the case is still an open research
question.

In the remainder of this section, we present this domain for quantitative anal-
ysis. Due to the many concepts and their relationships, the model is presented
in parts to enhance readability. For the full details of the domain model and a
complete figure, we refer to [9].

3.2 AK Basis Model

The AK basis model presented in figure 1 is not part of the domain model for
quantitative analysis. Rather, it presents the basic concepts that individual do-
main models extend for their particular case. In this case, it forms the foundation
upon which the domain model for quantitative analysis is built. At the heart of
the model is the concept of a Knowledge Entity: a concept, which represents
the different knowledge entities found in a particular domain. For example, a
requirement is a Knowledge Entity in a domain model for architectural design
documentation. In a domain model, all the domain concepts inherit from Knowl-
edge Entity. A domain model can define specific relationships among Knowledge
Entities, thereby relating them to each other. How and what the semantics of
these relationships are is not known to the AK basis model.

Knowledge Entities typically have one or more creators called Authors, who
express a Knowledge Entity in one or more Artifact Fragments. An Artifact
Fragment identifies which part of an Artifact contains a (partial) description
of a Knowledge Entity. For example, a paragraph (i.e. an Artifact Fragment)
describing a specific stakeholder (i.e. a Knowledge Entity) is contained in a Word
document (i.e. an Artifact).

KE Artifact
Fragment

Artifact

described by

contained in

contained in

Author

creates

relates to

Fig. 1. The AK basis model

224 A. Jansen et al.

3.3 Quantitative Analysis Process

The domain model part that models the concepts of the quantitative analysis
process is presented in figure 2. The goal of quantitative analysis is to investigate
the quality of different design options, or Alternatives. At Astron, Alternatives
are stratified. The first classification is in Design Concepts; the basic type of
design. A Design Concept outlines a basic solution direction, thus defining a
scope in the (large) design space. For radio telescopes, examples include: single
dish (i.e. make one big dish), phased arrays (i.e. combine multiple antennas using
beamforming), and aperture arrays (i.e. correlate the signals of telescopes and
phased arrays). A Design Concept is specialized in the analysis in one or more
Scenarios, which are quantitatively analyzed in one or more Analysis Models.

An Analysis model consists of System Parameters, which are the input and
output of Analysis Functions. A System parameter describes the state of part
of the Analysis Model, which is expressed in a Number of a unit defined by
the System Parameter. An Analysis Function describes a System Parameter ’s
behavior and relationships. For example, the cost of a dish is a System Parameter,
which can be the output of an Analysis Function that takes as inputs the System
Parameters of the costs of the various parts of a dish. Some of the System
Parameters can be related to one or more Quality Attributes, which are defined
by the quality model(s) used in the analysis. This relationship is used to classify
the System Parameters based on the quality they contribute to.

An Analysis Model is an aggregation of System Parameters, Analysis Func-
tions, Quality Attributes and Numbers. The input of an Analysis Model is set by

System
Parameter

(name+unit)

Design Concept Scenario

selects

Analysis
Function

takes as input
calculated by

Analysis Model

Number

Value Analysis Output

is of type

sets

Quality Attribute

is of type

Alternative

analyzes

based on

*

*

* *

*

1..*

1..*1..*

1..*1

1

1

1

1

1

1

Fig. 2. Quantitative Analysis Process Concepts

Sharing the Architectural Knowledge of Quantitative Analysis 225

assigning Values to input System Parameters. The output of an Analysis Model
are Analysis Outputs, which are Numbers of System parameters calculated by
Analysis Functions. In the example of the dish costs, the costs in dollars of the
dish is an output System Parameter associated with the Quality Attribute costs
and their value (i.e. a Number) is an Analysis Output. In a similar fashion, the
parts of a dish are modelled as input System parameters and Values. Please
remark that a distinction between input and output System Parameters is not
explicit in the model, but rather is inferred from the relationships they have with
the Analysis Functions.

Analysis functions have an additional property, which is not visualized in
figure 2. Analysis Models are typically incomplete, as analysts will utilize shortcuts
in their models based on their (tacit) domain knowledge and intuition. Hence to
address this issue, the domain model defines a Confidence property for an Anal-
ysis Function. This property indicates to which extent the Analysis Function is
reliable and whether the Analysis Function is based on intuition, trends, fact, or
simply a wild guess. Consequently, points for improvements in an Analysis Model
are made explicit.

3.4 Integration of Analysis Models

The previous subsection explained the concepts involved in quantitative analysis
for a single analysis model. However, as identified in section 2 there often is a
need to share individual analysis models, due to the divide and conquer strategy
being used for analysis. Only when the analysis models of the parts are unified
(and therefore shared), a complete architectural evaluation of an Alternative
becomes feasible.

Figure 3 presents the concepts involved with the integration of Analysis models.
First of all, the figure visualizes that each Analysis Model has its own Namespace.
It is in bridging these Namespaces of various Analysis Models that the sharing

System
Parameter

(name+unit)
Analysis Model

maps to/from
other NS

Namespace

Quality Attribute

is of type

Mapping

maps

by

* 2

1..*

1..*1..*

1..*

1..*
1 1 1

1 1

Fig. 3. Concepts for integrating Analysis Models

226 A. Jansen et al.

of AK takes place among different analysts. To integrate two analysis models, a
Mapping should be defined between them. This involves defining mapping rela-
tionships between the Quality Attributes (i.e. the quality model) and the System
Parameters of the two Analysis Models.

One effect of these Mappings is that it makes the dependencies among Anal-
ysis Models visible. For example, one could identify which output System Pa-
rameters of one Analysis Model are used in other Analysis Models. However,
more important is the fact that an analyst can follow the translation made from
his/her System Parameters and Quality Attributes terms into the terms used in
an Analysis Model created by a colleague. For example, the cost of a dish could
be called costs in one model and dish cost in another model. Mappings between
these two System Parameters identify that both denote the same concept.

Another effect of these Mappings is that the overlap and gaps between Anal-
ysis Models are identified. This helps analysts identify semantic inconsistencies
among the Quality Attributes and the System Parameters of different Analysis
Models. For example, the System Parameter costs of a dish could be expressed
in one Analysis Model in terms of millions of dollars, whereas another Analy-
sis Model assumes these costs to be in thousands of dollars. Mappings or their
absence, makes such inconsistencies visible.

3.5 Verification of Analysis Models

Another important form of AK sharing during architectural analysis is for the
purpose of verification, which is achieved in Astron by reviewing. In reviews,
analysts look for problems with the Analysis Models. The feedback gathered
from reviews can improve the analysis quality and thus (hopefully) improve
the quality of the resulting system. Figure 4 presents the concepts involved in
reviewing an Analysis Model.

At the heart is the concept of a Reviewable, which denotes a concept that
is relevant during reviewing. A Reviewable has a Review State, which is deter-
mined by the judgment of one or more Reviewers. Concepts that are Reviewable
include: Analysis Function, Mapping, System Parameter, and Components. Com-
ponents are a special type of System Parameter useful during reviewing. They
provide a mechanism to group large numbers of System Parameters together in a
hierarchical fashion (i.e. Components can contain other Components). Different
composition strategies can be used (e.g. process or deployment) to group System
Parameters together to create a View/Topology on the analysis.

The concepts of Component and View/Topology allow a Reviewer to judge a
group of System Parameters as a whole, thereby providing an explicit mechanism
to review at different levels of abstraction.

3.6 Validation of Designs Using Analysis Models

Quantitative analysis is not done without a reason. The outcome plays an im-
portant role in the architectural design process. This process can be seen as a de-
cision making process, in which an architectural decision has to be made among

Sharing the Architectural Knowledge of Quantitative Analysis 227

ComponentTopology/view

System
Parameter

(name+unit)

Analysis
function

Reviewable

Analysis model Mapping

Reviewer

maps to
by

determined by

for

reviews

reviews

Review state

maps

1

1

1

1

1..*

1..*

1..*

1..*

1..*

2

*

*

*

Fig. 4. Concepts of Reviewing and Quantitative Analysis

Design Concept Scenario

Analysis Result

Quality Attribute

Decision Topic

Concern

Alternative

Design Decision

originates from

raises

creates

adresses

chooses

pro con

Ranking

ranks

based on

based on

quantifies

based onfor

*

*

*

*

*

*
*

* *

*
*

*

*

1..*
1..*

1..*

1..*

1..*

1..*

1..*

1..*
1

1

1

1..*

Decision

Tradeoff

prefers
between

* 1

1

2..*

based on
*

*

1..*

Analysis Output

Fig. 5. The Quantitative Analysis and Design Decision process

different Alternatives [2,10]. The concepts involved with this decision making
process and the role quantitative analysis concepts play in it are visualized in
figure 5.

At the core of the decision making process are the concepts of Decision Topics,
Alternatives, and Concerns. Concerns (such as requirements) raise Decision
Topics to deal with them. The Decision Topics originate from various alter-
natives that could address the Concern. Alternatives themselves usually come
with side effects, which cause new Concerns. When a decision is made for a
certain Alternative, this is called a Design Decision.

228 A. Jansen et al.

When performing quantitative analysis, this Design Decision is made on the
basis of quantitative knowledge. More precisely, it is based on a quantitative
Ranking of Scenarios with respect to one or more Quality Attributes. The values
associated with these Quality Attributes stem from the Analysis Results of the
Scenarios.

It is not uncommon for quality attributes to be in conflict in the context of a
Ranking. To come to a Design Decision, a Tradeoff is made between them. The
Tradeoff expresses a preference for a certain Quality Attribute for a particular
Ranking. How these tradeoffs are exactly done can vary greatly from case to case
and the design method being used.

4 The Knowledge Architect Tool Suite

Astron analysts create analysis models using both general purpose and domain
specific tools. General purpose tools include Matlab, Python, Microsoft Excel,
white boards and pieces of paper. An example of a domain specific tool is the
Massive tool [8] for cost and performance analysis of embedded systems.

The domain model of section 3 should describe all the AK consumed and
produced in these tools. To validate the domain model with respect to verification
(see section 2), we have created the Knowledge Architect Excel plug-in tool [11],
which implements the domain model for one of these general purpose tools (i.e.
Microsoft Excel). The tool supports analysts in making the AK produced during
analysis explicit. The aim is to facilitate the sharing of AK for verification of
Excel analysis models by other analysts. The other AK sharing purposes (i.e.
integration and validation) are supported by other tools, which are part of the
larger Knowledge Architect tool suite.

In Excel, System Parameters, Analysis Functions, and Numbers have a strong
relationship, as these three concepts are joint together in the form of a cell. The
visible representation of the cell is normally the Number of a System Parame-
ter. The equation bar presents the Analysis Function of a System Parameter if
the appropriate cell is selected. By design, Excel does not allow for separation
between these concepts. Thus the only way to have multiple Scenarios share the
same Analysis Function for a System Parameter is by duplicating a cell.

Often labels surrounding the cell denote the semantic meaning of a cell (and
thereby of a System Parameter and its associated Number). However, the texts
of these labels are not formally related to any cells or System Parameters. The
tool allows analysts to make special annotations to make these relationships
explicit. Figure 6 presents how a cell is annotated. For a System Parameter of a
cell, a name, symbol, unit, and description can be defined. In the same window,
an analyst can define the confidence of the Analysis Function as well. The Author
of these Knowledge Entities is automatically determined.

The window presented in figure 6 does not show all of the KE types covered
by the tool. A similar window exists for relating System parameters to Sce-
narios. Another window allows different Reviewers to define the Review State
of a System Parameter and Analysis Function and give comments on them.

Sharing the Architectural Knowledge of Quantitative Analysis 229

Fig. 6. Knowledge Architect Excel Plugin annotating AK in Excel

Fig. 7. An excerpt of the system parameter dependency graph

Furthermore, since annotating cells one by one is time-consuming, a feature is
available to annotate whole tables of cells without much effort.

To facilitate verification, the tool offers a visualization of the dependency
graph. An example of this graph is presented in figure 7. A node in the graph
represents a System Parameter or a Component , i.e. a set of System Parameters.
An arrow between two nodes indicates that the Analysis Function(s) of the
System Parameter(s) of one node uses the System Parameters in its calculations,

230 A. Jansen et al.

thereby creating a dependency between the System Parameters. The name of a
node comes either from a user annotation or a default cell name. The bottom
part of the figure visualizes the details of a selected node.

There is a correspondence between the nodes in the dependency graph and
the cells of the Excel worksheets. Making a selection of cells in a worksheet, also
selects the related nodes in the dependency graph and vice versa. An analyst
can use this selection mechanism to easily create new Components. The color of
a node in figure 7 indicate the Component a System Parameter belongs to. A
user can expand or collapse nodes, thereby providing a way to view either more
abstract System Parameters or more detailed ones. Orthogonal to this, is the
ability to filter System Parameters based on the Scenarios they are involved in.

5 Experiment: Sharing a SKA Cost Model

5.1 Introduction

In this section we present an experiment to find out to what extent the Knowl-
edge Architect Excel plug-in helps in sharing AK for verification purposes.
Especially, we want to know whether an analyst understands someone else’s
analysis model better and more quickly when aided by the tool. Furthermore,
we want to know the reasons for any differences found.

The experiment takes place in the context of sharing a cost model of the
Square Kilometre Array (SKA) [12]. SKA is a world wide international scientific
instrument, which is still in its design phase and will consist of a radio signal
collectable area of one square kilometre. In cooperation with the Jodrell Bank
Centre for Astrophysics in Manchester, UK, Astron has devised a cost model for
SKA in Excel. The cost model is rather complex and consists of over 1500 differ-
ent System Parameters spread over 12 different Excel worksheets. The various
designs evaluated have costs in the order of billions (109) of dollars.

In this experiment, five Astron analysts were the subjects among which this
cost model was shared for verification. First, the analysts were given a training to
familiarize themselves with the tool. After this they were given tasks in the form
of time-boxed questions, one set to be completed with and one to be completed
without the tool. Besides timing the participants, we observed and debriefed the
analysts to gather additional qualitative data. The questions used are represen-
tative of questions analysts may ask during the verification of analysis models.
The questions are divided into the following three classes that denote activities
done during verification: (1) Sensitivity analysis. This type of task requires
an analyst to investigate the dependencies among System parameters to verify
their correct interaction. (2) Consistency analysis. This type of task requires
an analyst to verify whether the same kind of Analysis Functions are used for
similar System Parameters for different Scenarios. (3) Defect analysis. This
type of task requires an analyst to spot errors in the Analysis Functions, their
relationships and the assumed System Parameters for a Scenario.

In the remainder of this section, we present the lessons learned based on our
qualitative results. For more information about the experiment, we refer to [9].

Sharing the Architectural Knowledge of Quantitative Analysis 231

5.2 Lessons Learned

The experiment confirmed that verifying complex analysis models in detail is not
an easy task. The analysts mentioned having difficulties with understanding the
used terminology inside the cost model. Although the tool did help the subjects
to understand the concepts used, it failed to overcome differences in terminology
used for the names and descriptions of the System Parameters. Integrating of
analysis models, as described in section 3.4, might help in addressing this issue.
Since such an integration creates a deeper understanding among the analysts of
the differences in terminology they use within their models.

The navigation capabilities of the dependency graph were found useful to find
relevant parts of the analysis model. However, for understanding the analysis
itself, the vast multitude of arrows and nodes in the graph was too confusing.
Surprisingly enough, this did not matter to the co-author of the cost model; he
could directly spot some defects simply by looking at the dependency graph. This
indicates that he has some tacit knowledge for filtering out irrelevant information
so that he was able to use the tool to quickly get new insights into his own work.

It appeared that the cost model heavily relied on tables. For two-dimensional
data, tables in a spreadsheet are a pretty good representation, but for more
complex relations between system parameters the tool had a clear edge over
plain Excel. It made non-trivial relationships explicit, clearly visible and thus
easier to inspect for the subjects than in a spreadsheet.

Overall, it appears that the tool has potential to give extra insight into analysis
models, but in its current form fails to deliver in all cases. The domain specific
naming and description of the System Parameters is one cause for this. Another
cause is that the system parameter graph is too complex, i.e. it fails to reduce
the complexity of the analysis model. Improvements in the visualization and the
way non-relevant information is filtered out should help with addressing this
issue. On a positive side, the tool did help analysts quickly locate relevant parts
during verification and authors of a domain model with locating defects and
inconsistencies.

6 Related Work

For software architecture evaluation, two types of approaches can be discerned
[13]: scenario-based [14], and quantitative model based methods. In scenario-
based methods (e.g. ATAM [15], ALMA [16], SALUTA[17], PASA [18] (perfor-
mance), scenarios are used to define use-cases of the typical and expected future
uses of the system. Based on these scenarios one or more architectural designs
are evaluated for the qualities of interest. ATAM [15] is a framework method that
incorporates the results of other scenario based evaluation methods and focusses
on making tradeoffs between different qualities. From a knowledge perspective,
this is the decision part of the domain model.

ALMA [16] provides an analysis method for modifiability, likewise SALUTA
[17] does this for usability. PASA [18] combines a scenario-based approach with a

232 A. Jansen et al.

quantitative model for performance. PASA requires quantitative goals, performs
the analysis quantitatively where possible, and includes a cost-benefit analysis
as one of its steps.

A general approach to quantitative architectural analysis for multiple quality
attributes is proposed by Bachmann et al. in the form of so-called reasoning
frameworks [19]. A reasoning framework is a quantitative analysis model with
respect to a certain quality attribute. It proposes architectural tactics to improve
the architecture with respect to this quality attribute. In essence, a reasoning
framework is a quantitative analysis model. Hence, our domain model should
describe the AK concepts used in them.

Massive [8,20] is an analytic Layered Queueing Network method aimed at the
design of large and complex embedded systems, which focusses on quantitative
cost and performance analysis. The approach emphasizes reuse of components
and the topology of the system being designed. Our domain model abstracts some
of the core concepts of this approach and presents a more precise identification
of the concepts involved.

Compared to other AK meta-models and tools, e.g. the Core model [2], AREL
[21], Pakme [22], ADDSS[23], the domain model has an extensive description of
quantitative AK. The other meta-models exclusively focus on qualitative ratio-
nale with no to little attention on how this rationale relates to quantitative AK.

Farenhorst et al. [24] identify difficulties that arise when sharing AK, as well
as prerequisites for sharing to be successful. They define incentives for people
needed to be willing to share AK, as well as the lesson that striving for com-
pleteness is infeasible. However, they do not define the actual knowledge to be
shared, as is done in our domain model.

7 Conclusions and Future Work

This paper identified three different needs (i.e. integration, verification, and vali-
dation) for sharing the AK of quantitative analysis. For each need, the presented
domain model describes the concepts and relationships of the relevant AK. Based
on this domain model, a tool was created to facilitate AK sharing for verification.
In an experiment, this tool and the domain model were tested.

Based on the lessons learned in this experiment, we can conclude that there is a
close relationship between the knowledge needed for verification and integration.
Although the domain model provides a common language for the concepts, it
does not provide a common language for the instances. They are still domain
specific, thus synchronization at this level is still needed for both integration
and verification. To what extent this is also the case for validation is an open
question for future work.

Another open question has to do with the perceived complexity of an analysis
model. An interesting starting point for this is an observation made during the
experiment. The co-author of the analysis model used was capable of dealing with
this complexity, whereas others were not. The question is which tacit knowledge
was involved in this.

Sharing the Architectural Knowledge of Quantitative Analysis 233

How well the presented domain model is generally applicable is an open ques-
tion as well. For this, we plan to investigate how concepts found in another
organization map to ones in the presented domain model. This will provide us
with insight into the extent to which the domain model is generally applicable.

In future work, we plan to improve our tool based on the outcomes of these
questions. In addition, we plan to create tools, as part of the Knowledge Architect
platform, for sharing AK for validation and integration purposes.

Acknowledgements

This research is sponsored by the Dutch Joint Academic and Commercial Quality
Research & Development (Jacquard) program on Software Engineering Research
via contract 638.001.406 GRIFFIN: a GRId For inFormatIoN about architectural
knowledge. We thank the people from Astron who participated in this research.
In particular, Kjeld van der Schaaf and Albert-Jan Boonstra.

References

1. Bass, L., Clements, P., Kazman, R.: Software architecture in practice, 2nd edn.
Addison-Wesley, Reading (2003)

2. de Boer, R.C., Farenhorst, R., Lago, P., van Vliet, H., Jansen, A.G.J.: Architec-
tural knowledge: Getting to the core. In: Overhage, S., Szyperski, C.A., Reussner,
R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880. pp. 197–214. Springer, Hei-
delberg (2008)

3. Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214. Springer, Heidelberg (2006)

4. Habli, I., Kelly, T.: Capturing and replaying architectural knowledge through
derivational analogy. In: SHARK-ADI 2007: Proceedings of the Second Workshop
on SHAring and Reusing architectural Knowledge Architecture, Rationale, and
Design Intent, Washington, DC, USA, p. 4. IEEE Computer Society, Los Alamitos
(2007)

5. Lago, P., Avgeriou, P.: First workshop on sharing and reusing architectural knowl-
edge. SIGSOFT Software Engineering Notes 31(5), 32–36 (2006)

6. Clements, P., Rick Kazman, M.K.: Evaluating Software Architectures - Methods
and Case Studies. The SEI Series in Software Engineering. Addison-Wesley, Read-
ing (2002)

7. Alliot, S.: A performance cost estimation model for large scale array signal pro-
cessing system specification. In: Proc. of the Third International Samos Workshop
on Synthesis, Architectures, and Simulation, pp. 156–160 (July 2003)

8. Alliot, S., Nicolae, L., van Veelen., M.: A tool for exploring the large scale signal
processing systems specifications. In: IEEE International conference on parallel
computing in electrical engineering, pp. 341–348 (September 2004)

9. de Vries, T., Jansen, A.G.J.: Knowledge architect excel plug-in technical report.
Technical Report IWI preprint 2008-7-01, Department of Mathematics and Com-
puting Science, University of Groningen, PO Box 800, 9700 AV The Netherlands
(March 2008)

234 A. Jansen et al.

10. Jansen, A.G.J., Bosch, J., Avergiou, P.: Documenting after the fact: recovering
architectural design decisions. Journal of Systems and Software 81(4), 536–557
(2008)

11. The Griffin project website, http://search.cs.rug.nl/Griffin
12. The Square Kilometre Array project website, http://www.skatelescope.org/
13. Babar, M.A., Gorton, I.: Comparison of scenario-based software architecture eval-

uation methods. In: Software Engineering Conference, 2004. 11th Asia-Pacific, 30
November-3 December, pp. 600–607 (2004)

14. Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE
Trans. Softw. Eng. 28(7), 638–653 (2002)

15. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures, Views and Beyond. Addison-
Wesley, Reading (2002)

16. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability
analysis (ALMA). J. Syst. Softw. 69(1-2), 129–147 (2004)

17. Folmer, E., van Gurp, J., Bosch, J.: Software architecture analysis of usability. In:
9th IFIP Working Conference on Engineering for Human-Computer Interaction,
pp. 321–339 (July 2004)

18. Williams, L.G., Smith, C.U.: Pasa: a method for the performance assessment of
software architectures. In: WOSP 2002: Proceedings of the 3rd international work-
shop on Software and performance, Rome, Italy, pp. 179–189. ACM Press, New
York (2002)

19. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures to
achieve quality attribute requirements. IEE Proceedings - Software 152(4), 153–165
(2005)

20. Alliot, S., M.: Modelling and system design for the lofar station digital processing.
In: SPIE Astronomical Telescopes and Instrumentation, Modelling and System
Engineering (June 2004)

21. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

22. Babar, M.A., Gorton, I., Kitchenham, B.: A framework for supporting architecture
knowledge and rationale management. In: Dutoit, A.H., McCall, R., Mistŕık, I.,
Paech, B. (eds.) Rationale Management in Software Engineering, pp. 237–254.
Springer, Heidelberg (2006)

23. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A web-based tool for managing
architectural design decisions. SIGSOFT Software Engineering Notes 31(5) (2006)

24. Farenhorst, R., Lago, P., van Vliet, H.: Prerequisites for successful architectural
knowledge sharing. In: ASWEC 2007: Proceedings of the 2007 Australian Software
Engineering Conference, pp. 27–38. IEEE Computer Society, Los Alamitos (2007)

http://search.cs.rug.nl/Griffin
http://www.skatelescope.org/

Author Index

Adámek, Jǐŕı 71
Ardagna, Danilo 1
Avgeriou, Paris 220

Babar, Muhammad Ali 189
Bachmann, Felix 171
Bass, Len 171
Bennicke, Marcel 205
Bianco, Phil 171

Cortellessa, Vittorio 86

de Vries, Tjaard 220
Diaz-Pace, Andres 171
Duchien, Laurence 152

Engels, Gregor 205

Gallotti, Stefano 119
Ghezzi, Carlo 1, 119
Gorton, Ian 189

Han, Jun 28

Jansen, Anton 220

Kim, Hyunwoo 171
Kruchten, Philippe 43

Le Meur, Anne-Françoise 152
Lee, Larix 43
Lewerentz, Claus 205
Liu, Yan 189

Mallet, Julien 55
Merson, Paulo 135
Mirandola, Raffaela 1, 119
Moreno, Gabriel A. 135

Pierini, Pierluigi 86
Pľsek, Aleš 71

Raadt, Bas van der 103
Rouvrais, Siegfried 55

Salger, Frank 205
Spalazzese, Romina 86

Tamburrelli, Giordano 119
Tang, Antony 28
Tran, Minh H. 28

van Veelen, Martijn 220
van Vliet, Hans 28, 103
Vianale, Alessio 86

Waignier, Guillaume 152

	Title Page
	Preface
	Organization
	Table of Contents
	Rethinking the Use of Models in Software Architecture
	Introduction
	Software Quality Model Driven Framework
	Towards a Conceptual Map of Models for Quality Evaluation
	Queueing Network Models
	Markov Models
	Simulation Models
	Control-Oriented Models
	Model Comparison and Discussion
	Conclusions and Current Research Challenges
	References

	Design Reasoning Improves Software Design Quality
	Introduction
	Related Work
	Design Reasoning
	User Interface Usability

	An Empirical Study
	Participants
	Experiment Procedure
	Findings

	Discussions of the Findings
	Discussions
	Limitations

	Conclusions
	References

	A Tool to Visualize Architectural Design Decisions
	Introduction
	Background
	Design Decisions and Software Architecture
	Design Decision Representation

	Decision Exploration and Visualization Tools
	Current Design Decision Tool Support

	Tool Implementation
	Decision / Relationship List
	Decision Structure Visualization
	Decision Chronology Visualization
	Decision Impact Visualization

	Experience with the Tool
	Future Work
	Conclusion
	References

	Style-Based Model Transformation for Early Extrafunctional Analysis of Distributed Systems
	Introduction
	A Framework with Distributed Architectural Styles
	Three Classical Distributed Architecture Style Models
	Modelling Architectural Styles

	Functional Model
	Pure Functional Model of a Versioning System
	Facilitating Functional Model Generation

	Functional and Style-Based Model Transformation
	Two Style Specific Models of the Case Study

	Preparing Architecture Quality Analysis
	Related Work
	Conclusion and Perspective
	References

	Carmen: Software Component Model Checker
	Introduction
	Background
	Java PathFinder
	Component-Oriented Programming
	Behavior Protocols
	Goal Revisited

	Cooperation of Model Checkers
	Virtual Environment Concept
	Environment Simulation Concept

	Environment Simulation
	Cooperation
	Environment Simulation
	Verification
	Motivation Example Revisited

	Evaluation
	Case Studies and Performance Evaluation
	Tool Limitations

	Related Work
	Conclusion
	References

	MOSES: MOdeling Software and platform architEcture in UML 2 for Simulation-based performance analysis
	Introduction
	Related Work
	The General Methodology
	Tool Support to MOSES
	MOSES: The UML 2 Implementation
	Mapping UML-RT Stereotypes into UML 2 Metaclasses
	Two Example Prototypes: Round-Robin CPU and Main Dispatcher
	Validation of the UML 2 Implementation

	Conclusions
	References

	Designing the Enterprise Architecture Function
	Introduction
	Reference Model
	Structure of the EA Function
	Products of the EA Function
	EA Delivery Function
	EA Process Model
	Bodies and Roles within the EA Function

	EA Function at a Large International Company
	Lessons Learned
	Conclusions
	References

	Quality Prediction of Service Compositions through Probabilistic Model Checking
	Introduction
	Background
	The ATOP Methodology
	Quality Modeling of Service Compositions
	Target Models
	Properties Specifications
	Translation Elements

	TheATOPTool
	Case Study
	Related Work
	Conclusions
	References

	Model-Driven Performance Analysis
	Introduction
	Performance Reasoning Framework
	Intermediate Constructive Model
	Performance Model Generation
	Performance Metamodel
	From ICM to Performance Model

	Performance Analysis
	Worst-Case Analysis
	Average-Case Analysis

	Example
	Related Work
	Conclusions
	References

	Architectural Specification and Static Analyses of Contractual Application Properties
	Introduction
	Example
	Overview of the PHR Example
	PHR System Application Properties
	Specifying Application Properties with Existing ADLs

	Designing the Structure of an Application Architecture
	Contractual Specifications
	Definition
	Structural Specification
	Behavioral Specification
	Dataflow Specification
	QoS Specification

	Contractual Specification Composition
	Contract Computation
	Structural Contracts
	Behavioral Contracts
	Dataflow Contracts
	QoS Contracts
	Contract Composition Order

	Discussion
	Handling Platform-Specific Properties
	Limitations
	Implementation Status

	Related Work
	Conclusion
	References

	Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant
	Introduction
	Reasoning Frameworks: The Building Blocks
	Example: A Modifiability Reasoning Framework

	ArchE-RF Interface: The Collaborative Infrastructure
	ArchE Interaction Commands
	Governing Reasoning Frameworks
	Interaction with the User

	Implemented Reasoning Frameworks and Lessons Learned
	Related Work
	Conclusions
	References

	Middleware Architecture Evaluation for Dependable Self-managing Systems
	Introduction
	Self-managing Architecture Patterns
	M-A-P-E Pattern
	Policy Point Pattern
	Pattern Integration in Self-managing Architecture

	Evaluation Method
	Case Study
	Determine Quality Attributes
	Generate Key Scenarios
	Determining Pattern Alternatives
	Identify Middleware Mechanisms
	Define Quality Attribute Scale
	Evaluation

	Related Work
	Conclusion
	References

	Comprehensive Architecture Evaluation and Management in Large Software-Systems
	Introduction
	Requirements for Software Architecture Evaluation Methods
	Quality Gates at sd&m
	Basic Concepts
	The Architecture Quality Gate

	Architecture Management
	Motivation
	Dependency Management

	Case Studies
	Case Study 1: Effectiveness of the Architecture Questionnaire
	Case Study 2: Effectiveness of Lightweight ATAM
	Case Study 3: Architecture Management

	Conclusion and Future Work
	References

	Sharing the Architectural Knowledge of Quantitative Analysis
	Introduction
	Sharing the AK of Quantitative Analysis
	Domain Model for Quantitative Analysis
	Introduction
	AK Basis Model
	Quantitative Analysis Process
	Integration of Analysis Models
	Verification of Analysis Models
	Validation of Designs Using Analysis Models

	The Knowledge Architect Tool Suite
	Experiment: Sharing a SKA Cost Model
	Introduction
	Lessons Learned

	Related Work
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

